
Developing A Universal
Radio Astronomy Backend
Dr. Ewan Barr,
MPIfR Backend Development Group

Overview
Why is it needed?

What should it do?

Key concepts and technologies

Case studies:

MeerKAT FBF and APSUSE instruments

EDD, TNRT and SKA Prototype systems

Why is a URAB needed?
Adaptability:

Rapid development and deployment of new (and old) processing
algorithms

Adapt to meet new needs (e.g. real-time transient detection using ML)

Commensality:

The ability to observe for multiple distinct disciplines simultaneously

Simplification:

The move from custom hardware to COTS-based systems opens the
developer pool lowering the cost of development

What should it do?
Satisfy basic and not so basic telescope processing needs:

Digitisation, channelisation (Hz - MHz), Stokes detection,
integration

VLBI, pulsar timing, real-time transient search

Dumpable voltage buffers, online RFI flagging (e.g. SK)

Produce standard-format science-ready outputs (FITS, VDIF, FIL, etc.)

Run out-of-the box (no installation necessary)

Provide rich feedback to operators and astronomers

Physical view

Functional view

Requirements

High-performance
Flexible data transport

Fast disk I/O

Standardised interfaces
Hardware agnostic(ish)

Reproducibility

Monitoring & Reporting

High-performance
Credit: BERTEN DSP

GPUs are the preferred due to flexibility, cost and FP32 performance

PCIe mounted FPGAs are interesting possibility due to native 100
GbE support (e.g. Nallatech 520N)

Ethernet data backbone

Data streams split across
multiple groups

Low traffic per group (6 Gb/s)

Highly scalable

Self load balancing

Flexible data transport

Network data: VDIF, SPEAD

Control interface: Tango, KATCP

Application data: PSRDADA, HASHPIPE

Metadata: KATCP, redis, etcd

Standardised interfaces

Processing nodes are also
storage nodes

Performance increases with
number of spindles

Infiniband or Ethernet (w/
RoCE) interconnect

Cheap storage nodes can
be added to improve
performance

Fast disk I/O

Containerisation

Resource virtualisation

Version control

Environment control

Hardware agnostic(ish) + Reproducibility

Unified logging: Elasticsearch,
Logstash, Kibana

Hardware monitoring: Grafana,
Collectd, Prometheus,
Heapster

Everything run as services using
Kubernetes

Application monitoring: ???

Monitoring & Reporting

Case study I: MeerKAT

MeerKAT CBF switch

FBFUSE
Multi-beam beamformer

BLUSE 
SETI

PTUSE
Pulsar timingAPSUSE

Binary pulsar search

TUSE
Fast transient search

S-band Digitiser/
Packetiser

System Design:
 B. Klein, I. Kraemer, S. Hochgürtel
MeerKAT interfacing:
 C. Connot, E. Nussbaum
Controlling:
 A. Bell
Basic Concept by G. Knittel

S-band Digitiser/
Packetiser

FBFUSE
Multi-beam beamformer

APSUSE
Binary pulsar search

FBFUSE Cluster Specifications

Hardware — Compute Node (32x)

Huawei FusionServer 2288H V5
2x Xeon Gold 6134

2x 40 GbE NIC
384 GB RAM (transient buffer)

2x GTX 1080 Ti

Performance 1 Petaop

Transient buffer 12 TB (~50 seconds)

ENHANCING MEERKAT - S-BAND - FBF - APS

FBFUSE - BENCHMARKING

Antennas Beamformer benchmarking (Nbeams 85% real-time)

856 MHz 428 MHz 214 MHz

4 2944 5888 11776

8 3008 6016 12032

16 2272 4544 9088

32 1760 3520 7040
64 960 1920 3840

Original prototype: https://github.com/ewanbarr/beanfarmer
Integrated version: https://github.com/ewanbarr/psrdada_cpp

▸ DP4A support gives 4x
performance over f32 (4 Tflops to
16 Tops on Titan X Pascal)

https://github.com/ewanbarr/beanfarmer
https://github.com/ewanbarr/psrdada_cpp

APSUSE Cluster Specifications

Hardware — Capture Node (8x)
Huawei FusionServer 2288H V5

2x Xeon Gold 6136
40 GbE & 56 Gb/s IB NICs

192 GB RAM

Hardware — Compute Node
(60x)

Huawei FusionServer 2288H V5
2x Xeon Silver 4116

56 Gb/s IB NIC
96 GB RAM

2x GTX 1080 Ti

Storage volume 3.5 PB (distributed)

Write speed 48 GB/s (sustained)

MKSEND / MKRECV
Based on SPEAD2 library:

https://casper.berkeley.edu/wiki/SPEAD

https://github.com/ska-sa/spead2

MKRECV: Captures SPEAD stream(s) and saves to PSRDADA buffers

MKSEND: Converts PSRDADA buffer to SPEAD stream(s)

ASCII configuration file to support arbitrary SPEAD streams

Uses Infiniband Verbs for kernel bypass

https://casper.berkeley.edu/wiki/SPEAD
https://github.com/ska-sa/spead2

MKSEND / MKRECV
DA

DA MKSEND

Et
he

rn
et

 n
et

w
or

k

MKRECV

DA
DA

AP
P

AP
P

MKRECV configuration
Network connection
PACKET_SIZE 1500
IBV_IF 192.168.2.20
PORT 7148
MCAST_SOURCES 224.2.1.150,224.2.1.151,224.2.1.152,224.2.1.153
DADA_KEY dada
SYNC_TIME 1231235243.0000000
SAMPLE_CLOCK 1750000000.0
NTHREADS 32

#MeerKat F-Engine
NINDICES 3

The first index item is the running timestamp
IDX1_ITEM 0
IDX1_STEP 2097152 # The difference between successive timestamps

This second index is the F-engine ID
IDX2_ITEM 1
IDX2_LIST 0,1,2,3,5,6,7,8,9,10,11,12,13,14,15 # Antennas to capture

The second index item is the frequency
IDX3_ITEM 2
IDX3_LIST 0,256,512,768,1024,1280 # List of frequency partitions

SKA Prototype

TNRT

Effelsberg

Case study II:

Eifelsberg Direct Digitisation
Backend (EDD)

The Effelsberg realisation of the Universal Backend concept

Intended to support the new range of direct digitisation receivers:

K, C+, UBB, Q, Ka and Ku bands

Must integrate with the telescope control systems and provide
real-time feedback for pointing and focus calibration

Intended as the prototype for TNRT and SKA Prototype dish
(slightly different functionality, same framework)

Control Plane

Monitoring interface (iGUI)

Day 1 Functionality

Thoughts going forward
Many risks (noise diodes!), we expect to learn a lot in the coming
months

Future k8s updates will simplify system management across the board

We are happy to collaborate with any and all. Code is MIT licensed, k8s
configs and cluster configs can be made available

Dependency chains for specific needs should be developed with back-
pressure deployment

Need to understand lifetimes of COTS backends better (rolling
replacement/upgrade, accelerator changes, etc. etc.)

Before we needed hardware experts, now we need sys admins!

