

Distributed Correlation for VGOS observations

REICHERT GMBH

Simone Bernhart, Reichert GmbH/BKG Laura La Porta, Reichert GmbH/BKG Ruediger Haas, Onsala Stuart Weston, Tim Natusch, Sergey Gulyaev, Warkworth Jamie McCallum, Hobart Fengchun Shu, Shanghai Jakob Franz Gruber, Johannes Boehm, TU Vienna Gino Tuccari, MPIfR/INAF

7th International VLBI Technology Workshop, November 2018, Krabi, Thailand

- VGOS VLBI Global Observing System
- Distributed Correlation (DC): R1840 a Pilot
 Study
- VGOS today state of the art
- Pros and Cons of DC
- Conclusions and Prospects

VGOS

• VGOS - successor of VLBI2010 (IVS WG3) - renamed in 2012:

• Goals:

- 1-mm position accuracy on global baselines
- continuous measurements for time series of station positions and Earth orientation parameters
- turnaround time to initial geodetic results of less than 24 hrs
- Requirements:
 - New observing system based on small antennas (12 – 13m diameter), fastmoving
 - Broad-band receivers (2 14 GHz, four bands)
 - Recording rates of 8, 16, 32 Gbps
- Observing strategy:
 - Constant observation with 16 to 32 station network
 - One observation every 30 s

- Aim at testing distributed correlation for future VGOS sessions
- Each correlator only receives the raw data for part of the session (provided that one day corresponds to one session).
- Possible scenarios:
 - Main correlator + "branch" correlators, where main correlator does fringe search, preparation of vex and v2d files for correlation, post-processing and database creation
 - Branch correlators only: correlate and post-process the data, upload databases for analysts
- Prerequisite: all correlators use the same DiFX and HOPS (Haystack Observatory Postprocessing System) version for correlation and post-processing

The Bonn HPC Cluster

DiFX software correlator (Deller et al. 2011)

- 68 nodes x 20 compute cores = 1360 cores => 10 x higher computing power w.r.t. old cluster
- 3 head nodes => possible to run more correlations in parallel
- 56 Gbps Infiniband interconnect between nodes
- Storage space > 1 PB, organized in BeeGFS file system
- 2 x 1 Gpbs Internet connection

- 14 Mark-5 playback units
- 8 Mark-6 units with 4 bays

- Geodestic experiments currently processed with DiFX-2.5.2 (difx output Swinburne files) and HOPS v3.18 (Mark4 format), conversion between the two data formats done by difx2mark4
- Distributed test correlations of R1 (rapid) experiments, bi-weekly sessions (R1 + R4), EOP results on a timely basis, S/X, data format 512-16-2 (256-16-1)
- First attempt of distributed correlation performed in 2016 for R1785 (A. Bertarini) inconclusive
- R1840: 2 May 2018, 122-1700 to 123-1700 (doy + UT),
 - Participating stations: Ht, Is, Ke, Kk, Kv, Ma, Ny, On, Ww, Wz, Yg
 - Setup:
 - Main correlator: Bonn -> vex, v2d file, HOPS station codes and control file for fringe fitting
 - Five 'branch' correlators working on assigned 1-hour time slots
 - Analysis of resulting VGOS database by R. Haas, Onsala

• Data distribution:

 Branch Correlator
 Time Slot

 Warkworth (Ww)
 122-1800 to 122-1900

 Onsala (On)
 122-1900 to 122-2000

 Hobart (Hb)
 122-2000 to 122-2100

 Shanghai (Sh)
 122-2100 to 122-2200

 Vienna (Vien)
 122-2200 to 122-2300

- Data e-transferred to branch correlators (Ma, Kk on module, copied onto raid first)
- After finishing correlation and post-processing, branch correlators uploaded difx output and Mark4 data to main correlator for further processing

- Comparison of Mark4 output main vs. branch correlators
 - fourfit statistics (Quality Codes QC) from aedit (sum 2):

Ideal case:

Quality code summary for main corr.:A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?0 0 0 0 0 0 19 0 17 0 0 0 0 2 15 27 48 344 0Earliest scan:118-122-210107Latest scan:118-122-215802vs.Quality code summary for branch corr.:A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?0 0 0 0 0 19 0 17 0 0 0 2 15 27 48 344 0Earliest scan:118-122-210107Latest scan:118-122-210107Latest scan:118-122-215802

- QC = 0 Fringes not detected.
 - = 1-9 Fringes detected, no error condition. Higher #, better quality.
- = B Interpolation error in fourfit.
- = D No data in one or more frequency channels.
- = E Maximum fringe amplitude at edge of SBD, MBD, or rate window.
- = F Fork problem in processing.
- = G Fringe amp in a channel is <.5 times mean amp (only if SNR>20).
- = H Low Phase-cal amplitude in one or more channels.

REICHERT GMBH

QC = 0 Fringes not detected. Comparison of Mark4 output main vs. branch correlators = 1-9 Fringes detected, no error condition. Higher #, better quality. = B Interpolation error in fourfit. • fourfit statistics (Quality Codes - QC) from aedit (sum 2): = D No data in one or more frequency channels. = E Maximum fringe amplitude at edge of SBD, MBD, or rate window. = F Fork problem in processing. = G Fringe amp in a channel is <.5 times mean amp (only if SNR>20). = H Low Phase-cal amplitude in one or more channels. Ideal case: Worst case: Quality code summary for main corr.: Quality code summary for main corr.: ABCDEFG H0 1234567 8 9 ? ABCDEFG H0 1234567 8 9 ? 00 00 00 190 170 000 2 15 27 48 344 0 0 0 0 0 0 11 0 62 0 0 0 0 0 11 23 239 0 118-122-210107 118-122-190010 Earliest scan: Earliest scan: 118-122-215802 118-122-195846 Latest scan: Latest scan: VS. VS. Quality code summary for branch corr.: Quality code summary for branch corr.: ABCDEFG H0 12345 6 7 ABCDEFGH 0 123456789? 8 9 ? 00 00 00 190 170 000 2 15 27 48 344 0 00 00 00 16 138 132 0 0 0 0 0 0 17 43 0 Earliest scan: 118-122-210107 Earliest scan: 118-122-190010 118-122-215802 118-122-195846 Latest scan: Latest scan:

Distributed Correlation

9

REICHERT GMBH

QC = 0 Fringes not detected. Comparison of Mark4 output main vs. branch correlators = 1-9 Fringes detected, no error condition. Higher #, better quality. = B Interpolation error in fourfit. • fourfit statistics (Quality Codes - QC) from aedit (sum 2): = D No data in one or more frequency channels. = E Maximum fringe amplitude at edge of SBD, MBD, or rate window. Fork problem in processing. Fringe amp in a channel is <.5 times mean amp (only if SNR>20). = H Low Phase-cal amplitude in one or more channels. Ideal case: Worst case: Quality code summary for main corr.: Quality code summary for main corr.: ABCDEFG H0 1234567 8 9 ? ABCDEFG H0 1234567 8 9 ? 00 00 00 190 170 000 2 15 27 48 344 0 0 0 0 0 0 11 0 62 0 0 0 0 0 11 23 239 0 Earliest scan: 118-122-210107 118-122-190010 Earliest scan: 118-122-215802 118-122-195846 Latest scan: Latest scan: VS. VS. Quality code summary for branch corr.: Quality code summary for branch corr.: ABCDEFG H0 12345 6 7 9 ? ABCDEFGH 0 123456789? 8 00 00 00 190 170 000 2 15 27 48 344 0 00 00 00 16 138 132 0 0 0 0 0 0 17 43 0 Earliest scan: 118-122-210107 Earliest scan: 118-122-190010 118-122-195846 118-122-215802 Latest scan: Latest scan:

→ no control file applied, wrong station codes, one filelist contained two stations

10

Bundesamt für Kartographie und Geodäsie

Distributed Correlation

Afterwards:

```
    Comparison of Mark4 output main vs. branch correlators
```

fourfit statistics (Quality Codes - QC) from aedit (sum 2):

Ideal case:

REICHERT GMBH

```
Quality code summary for main corr.:
    ABCDEFG H0 1234567 8 9 ?
    00 00 00 190 170 000 2 15 27 48 344 0
            118-122-210107
Earliest scan:
             118-122-215802
Latest scan:
VS.
Quality code summary for branch corr.:
    ABCDEFG H0 12345 6 7
                                 8
                                    9 ?
    00 00 00 190 170 000 2 15 27 48 344 0
Earliest scan:
            118-122-210107
             118-122-215802
Latest scan:
```

```
QC = 0 Fringes not detected.
```

- = 1-9 Fringes detected, no error condition. Higher #, better quality.
- = B Interpolation error in fourfit.
- = D No data in one or more frequency channels.
- = E Maximum fringe amplitude at edge of SBD, MBD, or rate window.

- = F Fork problem in processing.
- = G Fringe amp in a channel is < .5 times mean amp (only if SNR>20).
- = H Low Phase-cal amplitude in one or more channels.

```
Quality code summary for main corr.:

A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?

0 0 0 0 0 0 11 0 62 0 0 0 0 0 0 11 23 239 0

Earliest scan: 118-122-190010

Latest scan: 118-122-195846

vs.

Quality code summary for branch corr.:

A B C D E F G H 0 1 2 3 4 5 6 7 8 9 ?

0 0 0 0 0 10 0 62 0 0 0 0 0 11 23 240 0

Earliest scan: 118-122-190010
```

```
Latest scan: 118-122-195846
```

REICHERT GMBH

 Comparison of Mark4 output main vs. branch correlators • fourfit statistics (Quality Codes - QC) from aedit (sum 2): Ideal case: Afterwards: Quality code summary for main corr.: Quality code summary for main corr.: ABCDEFG H0 1234567 8 9 ? ABCDEFG H0 1234567 8 9 ? 00 00 00 190 170 000 2 15 27 48 344 0 0 0 0 0 0 11 0 62 0 0 0 0 0 11 23 239 0 118-122-210107 Earliest scan: 118-122-190010 Earliest scan: 118-122-215802 118-122-195846 Latest scan: Latest scan: VS. VS. Quality code summary for branch corr.: Quality code summary for branch corr.: ABCDEFGH0123456789? ABCDEFG H0 12345 6 7 8 9 ? 0 0 0 0 0 0 10 0 62 0 0 0 0 0 11 23 240 0 00 00 00 190 170 000 2 15 27 48 344 0 Earliest scan: 118-122-210107 Earliest scan: **H8-122-190010** 118-122-215802 118-122-195846 Latest scan: Latest scan:

Distributed Correlation

- QC = 0 Fringes not detected.
 - = 1-9 Fringes detected, no error condition. Higher #, better quality.
 - = B Interpolation error in fourfit.
 - = D No data in one or more frequency channels.
 - = E Maximum fringe amplitude at edge of SBD, MBD, or rate window.

.....

- Fork problem in processing.
- Fringe amp in a channel is <.5 times mean amp (only if SNR>20).
- = H Low Phase-cal amplitude in one or more channels.

Fringe amp in a channel is <.5 times mean amp (only if SNR>20).

= 1-9 Fringes detected, no error condition. Higher #, better quality.

= E Maximum fringe amplitude at edge of SBD, MBD, or rate window.

- Comparison of Mark4 output main vs. branch correlators
 - fourfit statistics (Quality Codes QC) from aedit (sum 2):

Ideal case:

```
Quality code summary for main corr.:
    ABCDEFG H0 1234567 8 9 ?
    00 00 00 190 170 000 2 15 27 48 344 0
               118-122-210107
Earliest scan:
              118-122-215802
Latest scan:
VS.
Quality code summary for branch corr.:
    ABCDEFG H0 12345 6 7
                                   8
                                      9 ?
    00 00 00 190 170 000 2 15 27 48 344 0
Earliest scan:
              118-122-210107
              118-122-215802
Latest scan:
```

Afterwards:

```
Quality code summary for main corr.:

A B C D E F G H 0 1234567 8 9

0 0 0 0 0 0 11 0 62 0 0 0 0 0 0 11 23 239 0

Earliest scan: 118-122-190010

Latest scan: 118-122-195846

vs.

Quality code summary for branch corr.:

A B C D E F G H 0 1234567 8 9?

0 0 0 0 0 0 10 0 62 0 0 0 0 0 11 23 240 0

Earliest scan: 118-122-190010

Latest scan: 118-122-195846
```

QC = 0 Fringes not detected.

= B Interpolation error in fourfit.

Fork problem in processing.

= D No data in one or more frequency channels.

= H Low Phase-cal amplitude in one or more channels.

= 1-9 Fringes detected, no error condition. Higher #, better quality.

= E Maximum fringe amplitude at edge of SBD, MBD, or rate window.

Fringe amp in a channel is <.5 times mean amp (only if SNR>20).

- Comparison of Mark4 output main vs. branch correlators
 - fourfit statistics (Quality Codes QC) from aedit (sum 2):

Ideal case:

```
Quality code summary for main corr.:
    ABCDEFG H0 1234567 8 9 ?
    00 00 00 190 170 000 2 15 27 48 344 0
            118-122-210107
Earliest scan:
             118-122-215802
Latest scan:
VS.
Quality code summary for branch corr.:
    ABCDEFG H0 12345 6 7
                                  8
                                     9 ?
    00 00 00 190 170 000 2 15 27 48 344 0
Earliest scan:
            118-122-210107
              118-122-215802
Latest scan:
```

Afterwards:

```
Quality code summary for main corr.:

A B C D E F G H 0 123456789

0 0 0 0 0 0 11 0 62 0 0 0 0 0 0 11232390

Earliest scan: 118-122-190010

Latest scan: 118-122-195846

vs.

Quality code summary for branch corr.:

A B C D E F G H 0 123456789?

0 0 0 0 0 0 10 0 62 0 0 0 0 0 0 11232400

Earliest scan: 118-122-190010

Latest scan: 118-122-195846
```

QC = 0 Fringes not detected.

= B Interpolation error in fourfit.

Fork problem in processing.

= D No data in one or more frequency channels.

= H Low Phase-cal amplitude in one or more channels.

 \rightarrow data missing in the "good" scan

• X- and S-band observables: total multiband delay (MBD), correlation amplitude/phase, mean visibility amp./phase, residual single band delay (SBD)/MBD, SNR

- X- and S-band observables: total multiband delay (MBD), correlation amplitude/phase, mean visibility amp./phase, residual single band delay (SBD)/MBD, SNR
 - Some random plots:

- X- and S-band observables: total multiband delay (MBD), correlation amplitude/phase, mean visibility amp./phase, residual single band delay (SBD)/MBD, SNR
 - Some random plots:

REICHERT GMBH

15000

10000

-5000

-10000

1500

- X- and S-band observables: total multiband delay (MBD), correlation amplitude/phase, mean visibility amp./phase, residual single band delay (SBD)/MBD, SNR
 - Some random plots:

REICHERT GMBH

15000

10000

-5000

-10000

Bundesamt für

Kartographie und Geodäsie

- X- and S-band observables: total multiband delay (MBD), correlation amplitude/phase, mean visibility amp./phase, residual single band delay (SBD)/MBD, SNR
 - Some random plots:

REICHERT GMBH

7th International VLBI Technology Workshop, November 2018, Krabi, Thailand

Bundesamt für

Kartographie und Geodäsie

• Comparison of DiFX output files main vs. branch correlator using diffDiFX.py

• Comparison of DiFX output files main vs. branch correlator using diffDiFX.py

REICHERT GMBH

REICHERT GMBH

40 50 Jer of Scans 60

70

Bundesamt für Kartographie und Geodäsie

Distributed Correlation - Summary

• Issues (hiccups):

REICHERT GMBH

- Wrong schedule for Onsala station: 256-16-1 instead of 512-16-2 original database produced with 1bit sampling.
- One branch correlator used DiFX 2.5.1 instead of DiFX 2.5.2 (no tragedy ;-)).
- Two didn't apply the HOPS station codes table for difx2mark4; one forgot to use the control file.
- Error during correlation: filelist contained two stations needed recorrelation
- Incomplete scans after e-transfer
- Scans/baselines not correlated
- Analysis of the VGOS database still pending
- The test has confirmed that the results at the main and branch correlators are identical as expected.
- Similarly, the analysis results should also be the same.
- → First attempt of DC (R1785) failed for above mentioned reasons (particularly number of scans differed) and beyond (e.g. test DiFX version was not considered).

VGOS today - state of the art

• Current status:

REICHERT GMBH

- Antennas: GGAO, Westford, Kokee, Onsala, Wettzell, Yebes, (Ishioka)
- Frequency range: 3 10 GHz, four bands
- Dual-linear-polarization
- Recording rate 8 Gbps
- 30 sec scans (~50 scans per hour)
- IVS VGOS tests: 24-hour observations with all available stations, correlated in Haystack
- EU-VGOS tests: European stations, 4-hour observations, correlated in Bonn (main purposes: get to know backends and related issues)
- Achieved accuracy: WRMS deviation of the baseline length residuals about the weighted mean of 1.6 mm for baseline GGAO - Westford (Niell et al. 2018)

©ivscc.gsfc.nasa.gov

VGOS today - state of the art

VGOS Data Transmission and Correlation Plan (Petrachenko et al. 2015)

Year	# of sites	Hours of obs/day	data/day/site (TB)	data/day at correlator (TB)	network data rate at each site (Gbps)	network data rate at correlator (Gbps)
2018	20	10	18.0	360	2.4	48
2019	24	12	21.6	518	2.8	68
2020	24	24	43.2	1037	5.6	134

VGOS today - state of the art

VGOS Data Transmission and Correlation Plan (Petrachenko et al. 2015)

Year	# of sites	Hours of obs/day	data/day/site (TB)	data/day at correlator (TB)	network data rate at each site (Gbps)	network data rate at correlator (Gbps)
2018	20	10	18.0	360	2.4	48
2019	24	12	21.6	518	2.8	68
2020	24	24	43.2	1037	5.6	134

Status today (2018):

- # of sites 6; transfer rates 0.1 (Kk), 1 (GGAO, Wz), 10 (On, Ys), 20 (Wf) Gbps
- Hours of obs/day: bi-weekly 24-hour obervations data/site ~ 36 TB
- Network data rate at correlators:
 - Haystack 20 Gbps
 - Bonn 2 X 1 Gbps
 - WACO 1 Gbps upgrade to 4 10 Gbps (not yet clear)
 - Shanghai 1 Gbps
 - Tsukuba 10 Gbps (non-DiFX)

VGOS today - state of the art

VGOS Data Transmission and Correlation Plan (Petrachenko et al. 2015)

Year	# of sites	Hours of obs/day	data/day/site (TB)	data/day at correlator (TB)	network data rate at each site (Gbps)	network data rate at correlator (Gbps)
2018	20	10	18.0	360	2.4	48
2019	24	12	21.6	518	2.8	68
2020	24	24	43.2	1037	5.6	134

Status today (2018):

- # of sites 6; transfer rates 0.1 (Kk), 1 (GGAO, Wz), 10 (On, Ys), 20 (Wf) Gbps
- Hours of obs/day: bi-weekly 24-hour obervations data/site ~ 36 TB
- Network data rate at correlators:
 - Haystack 20 Gbps
 - Bonn 2 X 1 Gbps
 - WACO 1 Gbps upgrade to 4 10 Gbps (not yet clear)
 - Shanghai 1 Gbps
 - Tsukuba 10 Gbps (non-DiFX)

- IVS VGOS observations:
 - Moduls are shipped, takes 2 to 3 weeks, e-transfer On
 - Recording at 8 Gbps requires two Mark6 modules
- EU-VGOS tests:
 - Data are e-transferred, takes
 - ~2 days/station (at 400 Mbps)

- What amount of data (in terms of time) would be needed for a proper analysis, i.e. how many hours of observational data would be the minimum (2, 4, 6, 10, 12, 24 hours)?
 - Analyze short sessions, ~1 hr, for UT1
 - Normally for geodesy sessions a full 24 hours so that any diurnal effects will average out
 - For VGOS data may be able to solve for piecewise continuous EOP's at perhaps 1 or 2 hour intervals, like done with clocks and atmospheres
 - Probably at least 6 hours would be desireable
 - But: analysts don't know the answer at this point

• Sessions can be divided in proportion to the available capacity at each correlator

Kartographie und Geodäsie

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

Cons

• More complex logistics - stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

- More complex logistics stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator
- If data are distributed in chunks of, e.g. 6 hours, main correlator can
 not easily correct for clock jumps possibly need to fetch more data in
 the middle based on log information or on station's start/stop message or in the end miss the clock jump due to incomplete information → need
 for recorrelation.

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

- More complex logistics stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator
- If data are distributed in chunks of, e.g. 6 hours, main correlator can
 not easily correct for clock jumps possibly need to fetch more data in
 the middle based on log information or on station's start/stop message or in the end miss the clock jump due to incomplete information → need
 for recorrelation.
- Astronomers already make use of DC, for example in case of EHT observations divided into polarizations.

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

• Astronomers already make use of DC, for example in case of EHT observations – divided into polarizations.

- More complex logistics stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator
- If data are distributed in chunks of, e.g. 6 hours, main correlator can not easily correct for clock jumps - possibly need to fetch more data in the middle based on log information or on station's start/stop message or in the end miss the clock jump due to incomplete information → need for recorrelation.
- The way, the VGOS data are recorded/written, doesn't allow for frequency separation.

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

• Astronomers already make use of DC, for example in case of EHT observations – divided into polarizations.

- More complex logistics stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator
- If data are distributed in chunks of, e.g. 6 hours, main correlator can
 not easily correct for clock jumps possibly need to fetch more data in
 the middle based on log information or on station's start/stop message or in the end miss the clock jump due to incomplete information → need
 for recorrelation.
- The way, the VGOS data are recorded/written, doesn't allow for frequency separation.
- Recording rate of 8 Gbps requires 2 Mark6 modules: could be filled up with several sessions, but prolongues turnaround time → desirable?

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

• Astronomers already make use of DC, for example in case of EHT observations – divided into polarizations.

Cons

- More complex logistics stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator
- If data are distributed in chunks of, e.g. 6 hours, main correlator can
 not easily correct for clock jumps possibly need to fetch more data in
 the middle based on log information or on station's start/stop message or in the end miss the clock jump due to incomplete information → need
 for recorrelation.
- The way, the VGOS data are recorded/written, doesn't allow for frequency separation.
- Recording rate of 8 Gbps requires 2 Mark6 modules: could be filled up with several sessions, but prolongues turnaround time → desirable?

On the other hand, more shipments with half-empty disks is uneconomic. A possible solution, but also time-consuming: copy data from Mark6 onto flexbuff/raid and back onto module.

Pros

REICHERT GMBH

• Sessions can be divided in proportion to the available capacity at each correlator

• Astronomers already make use of DC, for example in case of EHT observations – divided into polarizations.

Cons

- More complex logistics stations must transfer/ship the raw data to various correlators which afterwards must upload correlation results to main correlator
- If data are distributed in chunks of, e.g. 6 hours, main correlator can not easily correct for clock jumps - possibly need to fetch more data in the middle based on log information or on station's start/stop message or in the end miss the clock jump due to incomplete information → need for recorrelation.
- The way, the VGOS data are recorded/written, doesn't allow for frequency separation.
- Recording rate of 8 Gbps requires 2 Mark6 modules: could be filled up with several sessions, but prolongues turnaround time → desirable?

On the other hand, more shipments with half-empty disks is uneconomic. A possible solution, but also time-consuming: copy data from Mark6 onto flexbuff/raid and back onto module.

- The necessary transfer rates for such huge amount of data cannot be met today or in the medium/long term because these are too expensive
 - e-transfer no viable solution

Conclusions and Prospects

- Does Distributed Correlation work?
 - In principle "Yes"
 - A distributed model will require very good project management and communication. The admin overhead will be higher than having a single correlator.
 - How should the sessions be separated/distributed?
 - Chunks of, e.g., 6 hours:
 - Either four independently working branch correlators (might result in different clock values and control files for post-processing)
 - Or one main correlator responsible for fringe search and post-processing (requires more logistics, longer turnaround-time, issues during fringe search, e.g., with clock breaks)
 - Each 24-hour session sent to one correlator (our favourable suggestion in terms of shipment, station clocks/jumps, post-processing, maybe even turnaround time?)
 - Requires preferably seven correlators

\rightarrow Await feedback from the analysts

Conclusions and Prospects

- Does Distributed Correlation work?
 - In principle "Yes"
 - A distributed model will require very good project management and communication. The admin overhead will be higher than having a single correlator.
 - How should the sessions be separated/distributed?
 - Chunks of, e.g., 6 hours:
 - Either four independently working branch correlators (might result in different clock values and control files for post-processing)
 - Or one main correlator responsible for fringe search and post-processing (requires more logistics, longer turnaround-time, issues during fringe search, e.g., with clock breaks)
 - Each 24-hour session sent to one correlator (our favourable suggestion in terms of shipment, station clocks/jumps, post-processing, maybe even turnaround time?)
 - Requires preferably seven correlators

Cloud Computing

- Two main problems (Helge Rottmann, priv. comm.):
 - Bandwidth to transfer the data into the cloud
 - Costs of data storage in the cloud:
 - ~ 2 4 cent/month \rightarrow 1 TB ~ 20 40 \$/month -> okay for cm-VLBI
 - But: expensive for broadband data (EHT, VGOS)
 - Example: EHT has ~ 7 PB per session \rightarrow ~ 140.000 \$/month,

besides the transfer would take ages

(Check e.g. https://aws.amazon.com/de/govcloud-us/pricing/s3/ for prices)