

2018 IVTW @ Krabi, Thailand, Nov. 12~15, 2018

EAVN status

SW Digital Filter Development status Future works

22 GHz

🔴 43 GHz

The East Asian VLBI Network

(Image Credit (ground photograph): Reto Stöckli, NASA Earth Observatory)

EAVN: Specifications (as of 2018 Sep 6)

- Number of (potential) telescopes: 20 (17 telescopes have participated in previous EAVN observations one or more times)
 - Korea: 4, China: 5, Japan: 11
- (Possible) frequency coverage:
 - 6.7 GHz (11 stations), 8 GHz (15), 22 GHz (16), 43 GHz (12)
- (Expected) angular resolution:
 - 2.4 mas (6.7 GHz; Ogasawara Kunming)
 - 1.5 mas (8 GHz; Ogasawara Nanshan)
 - 0.6 mas (22 GHz; Ogasawara Nanshan)
 - 0.3 mas (43 GHz; Ogasawara Nanshan)
- Sensitivity for 7- σ fringe detection (τ = 60 s, *B* = 256 MHz):
 - 1.6 mJy (8 GHz; Tianma KVN)
 - 9.5 mJy (22 GHz; Tianma KVN)
- (Expected) recording rate: \geq 1 Gbps (= 256 MHz BW)
- (Currently-used) correlator:
 - KASI (Korea): Daejeon Hardware Correlator (DHC) and DiFX
 - SHAO (China): DiFX

Recent Updates (in recent one year)

- Launch of EAVN open-use operation
- System change/upgrade
 - Kunming 40 m: 6.7 GHz receiver available
 - Nanshan 26 m: 43 GHz cooled receiver under testing
 - Yamaguchi 32 m: Shut-down of operation at 22 GHz
 - Nobeyama 45 m: New quasi-optics at 22/43/(86) GHz simultaneous reception (HINOTORI Project led by Imai-san)
 - VERA:
 - Dual polarization system: receiver development ongoing
 - Installation of 22/43 GHz simultaneous reception system at all stations
 - 2 Gbps operation
 - KVN: operational (up to 16 Gbps)
 - JVN, VERA: test observations ongoing
- EAVN AGN Campaign in 2018

EAVN (+ Italy) AGN Campaign in 2018

- Main purpose
 - To obtain scientific results with EAVN
 - To conduct VLBI monitoring quasi-simultaneously with EHT + ALMA campaign
 - (To evaluate system performance of EAVN)
 - (To check up on the array operation and availability of KEY/VEX files at each station)
- Brief summary of the Campaign
 - Main target: Sgr A* (43 GHz), M87 (22 and 43 GHz)
 - Total observing time: 186 hours/18 epochs (83 hours/9 epochs at 22 GHz; 103 hours/12 epochs at 43 GHz)
 - cf. EAVN campaign in 2017: 40 hours/5 epochs at 22 GHz; 100 hours/12 epochs at 43 GHz
 - Number of participating telescopes: 14 (Italy: 2, China: 2, Korea: 3, Japan: 7)

Correlation and data reduction ongoing

Short- and Mid-Term Agenda

Year	2016	2017	2018	2019	2020	
Actions	 Imaging tests Science commissioning observations at 22/43 GHz Fringe tests at 6.7 GHz Launch of EAVN Science WG 	 Performance evaluation and science commissioning at 6.7/22/43 GHz Practice of the array operation (scheduling, telescope operation, data handling, etc.) 	 (Late 2018) Risk- shared open use at 22/43 GHz Performance evaluation at 6.7 GHz Performance evaluation of 2 Gbps mode 	 (Late 2019) Risk- shared open use at 6.7 GHz (Late 2019 or early 2020) Risk- shared open use of 2 Gbps mode Performance evaluation for extending observation modes (8 GHz, 2-pol., etc.) 	 (Late 2020) Risk- shared open use of dual-polarization mode Test observation at low frequencies (< 5 GHz) 	
Freq.	6.7/22/43 GHz	6.7/22/43 GHz	6.7/22/43 GHz	6.7/8/22/43 GHz	(1.6/2/5/)6.7/8/22 /43 GHz	
Purposes	 Evaluation of array performance and array operation commissioning Performance evaluation at 6.7/22/43 GHz 	 Initial scientific outputs from EAVN Confirmation of performance at all frequencies 	 Launch of regular operation of EAVN Conformation of performance for wideband observation 	 Stable operation of EAVN Confirmation of performance for various observation modes 	 Regular operation with various observation modes Investigation of low-frequency VLBI with FAST and other telescopes 	

Short-Term Agenda

- Fringe tests and confirmation of imaging capability
 - 6.7 GHz with JVN and CVN (Tianma, Kunming)
 - With the data rate of 2 Gbps
 - With Nanshan at 43 GHz
- Dual-polarization capability
- Dual- (triple-)band simultaneous receiving system
 - KVN: operational
 - VERA: temporary installation, VLBI test ongoing
 - Nobeyama 45 m: HINOTORI Project (22/43/86 GHz receiving system: system development ongoing led by Imai-san)

Mid- and Long-Term Agenda

- Collaboration with the Australian LBA
- Capability of low-frequency (< 5 GHz) observations (as a 'pathfinder' of SKA)
 - Installation of VLBI backend system at FAST → opportunity of a VLBI test observation at L-band in 2020 and beyond
 - Future plan of VLBI observations with EVN
 - VLBI observation at 1.6/2 GHz (there are at least 4 telescopes which are available at below 5 GHz except FAST)
 - Possibility of installation of 6.7(/8) GHz receivers in FAST?
 (is it possible to install equipment with external budgets?)
- Collaboration with the Thai VLBI Network (TVN)

- Available from 2020 or later?

Why SW Digital Filter?

- Each station located in Japanese VLBI Network (JVN), there are no HW DFB at station, so the observation data was recorded with wideband (over 512 MHz BW).
- In order to make a correlation with other stations, digital filtering work is needed, and recently the HW DFB is being used to be filtered, but it took quite long time for filtering of observation data.
- So SW digital filter at KJCC is needed to support and reducing the time for filtering work.

Digital Filter

Key point : Convolution

$$y(n) = \sum_{k=0}^{M} h(k)x(n-k) = \sum_{k=0}^{M} x(k)h(n-k)$$

- \Leftrightarrow *h* is filter coefficient, *x* is input data
- Range k=0 to M, combination of Multiply and Add operation

→ Important thing of digital filter is precise operation like resolution, but it needs to reduce the operation time for huge observation data to be processed within real-time.

ADD Operation, k=0 to M

Filter Design using GPU

- The minimum unit of GPU operation is thread. So we have to perform synchronization between thread in every layer, and we could only approach the indicated memory address.
- It is quit complicated operation.
- So the add operation should be reduced to have high performance.

Parallel Reduction

- If the LAYER is increased, it needs much more time rather than operation rate
- Refer to Nvidia paper : table
- Experiments
 - G80 GPU used
 - 900MHz DDR
 - Support 86.4GB/s B.W.
 - Support 345.6GFLOPS

		Time (222 ints)	Bandwidth	Step Speedup	Cumulative Speedup
	Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
	Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
•	Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
	Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
	Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
	Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
	Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

- Experiment conditions : only conducting the add operation for the 4M sample(2^22). Only add operation is conducted and it needs the 15.7GFLOPS operation for 1 sec input data.
- For this, we can see the operation indicated in table, the operation time is more needed for the required operational rate.
- 22 layers are needed for 4M sample input. The input and output data rate is influenced to operation time, but it needs much more time by the number of layer.

Required items

EAVN Filter Specification

- 2Gbps (512 MHz BW) → 1Gbps(256 MHz BW)/16channel
- FP32 (single-precision 32bit) operation is needed
- In GPU, FP16 is supported
- But, coefficient loss in FP16 is occurred
 - Due to 2^-14 ~ 2^15 (0.00006103 ~ 32,768) precision
 - It is not able to adopt FP16 s exp .mantissa
- EAVN DF : 511 coefficients are used
 - For this, 1,047,552,000,000 FLOPS = 1TFLOPS operations are needed
 - <u>9 LAYERS operation are also needed</u>
- When data reading from server, data should be aligned and after filtered with GPU, the output data for Mark5B or VDIF is formed with re-quantization, then saved to the storage.
- Data Input & Output should be considered.

GPU board selection

- In order to satisfy the requirement of EAVN DF,
- It should be supported with minimum 10TFLOPS in FP32 and with over 100 GB/s memory BW

- The Titan V and Xp specification are summarized in this table.
- Titan Xp is a bit good performance compared to the price, but we selected Titan V board to use the Tensor Core which is recently supported.

	Titan V	Titan Xp
CUDA Cores	5120	3840
Tensor Cores	640	N/A
ROPs	96	96
Core Clock	1200MHz	1485MHz
Boost Clock	1455MHz	1582MHz
Memory Clock	1.7Gbps HBM2	11.4Gbps GDDR5X
Memory Bus Width	3072-bit	384-bit
Memory Bandwidth	653GB/sec	547GB/sec
VRAM	12GB	12GB
L2 Cache	4.5MB	3MB
Single Precision		12.1 TFLOPS
Double Precision	6.9 TFLOPS (1/2 rate)	0.38 TFLOPS (1/32 rate)
Half Precision	27.6 TFLOPS (2x rate)	0.19 TFLOPs (1/64 rate)
Integer (INT8)	55.2 TOPS (4x rate)	48.4 TOPS (4x rate)
Tensor Performance (Deep Learning)	110 TFLOPS	N/A
Other Native INT Operations	INT32, DP4A, DP2A	DP4A, DP2A
GPU	GV100 (815mm2)	GP102 (471mm2)

EAVN Digital Filter System

- Supermicro 4029GP TRT
 - Intel XEON Gold 6154 2ea
 - 384GBytes DDR4
 - SAS RAID card 2ea : 256 TB HDDs capacity
 - 10Gb SFP+ Ethernet

Front

Rear

Filtering using Titan V(Tensor Core GP

- ◆ 2Gbps (512MHz BW, 1channel) → 1Gbps(256MHz BW, 16channel)
- ✤ Original data : 95 sec
- Filtering time : <u>Takes 106 sec</u>
- 1.1 times
- using 1 GPU card
- If 2 GPU board will be used, the filtering will be processed with real-time.

						A.L.				R
Σ			oper@le	ocalhost:~/w	ork/kavafil	ter/eavnconve	erge_v2.3			_ 🗆 ×
File Edit V	/iew Search	Terminal	Help							
Shar key	ed Memory S shmid	Segments owner	perms	bytes	nattch	status				^
Sema key	phore Array semid	ys owner	perms	nsems						
[oper@local						103b_KVNTN_29 (17kh03b/k17k		290024325_W5		
^C [oper@local ^C	host eavnco	onverge_v2	3]\$./eavr	n_converge 1	6 /datal/	(17kh03b/k17k	h03b_KVNUS_	290024325_W5		
	host eavnco	onverge_v2	3]\$./eavr	n_converge 1	6 /datal/k	(17kh03b/k17k	h03b_KVNYS_	290024325_W5		
[oper@local total 71441		onverge_v2	3]\$ ll /da	ata1/k17kh03	b/					
-rw-rr -rw-rr [oper@local	1 oper oper 1 oper oper host eavnco	r 243715440 r 24321310 onverge_v2	064 Nov 1 720 Nov 1 3]\$ rm -f	13:50 k17kh 13:53 k17kh /data1/k17k	03b_KVNUS 03b_KVNYS h03b/k17kl	_290024325_W5 _290024325_W5 _290024325_W5 _03b_KVNYS_29 <17kh03b/k17k	0024325_W5	290024325_W5		
[oper@local	host eavnco	onverge_v2	3]\$ ipcs							
Mess key	age Queues msqid	owner	perms	used-byte	s messag	jes				
Shar	ed Memory S	Segments -								
key 0x0001619c	shmid 5406720	owner oper	perms 777	bytes 16744448	nattch 0	status				
0x0001d529		oper	777	16744448	0					
0x000b722b	5472258	oper	777	16	Θ					
Sema	phore Array	vs								
key	semid	owner	perms	nsems						
0x00538002	1179648	oper	666	1						
[oper@local total 71433		onverge_v2	3]\$ ll /da	atal/k17kh03	b/					
- rw-rr	1 oper oper 1 oper oper	r 243715440 r 243129384	064 Nov 1 196 N <u>o</u> v 2	13:50 k17kh	03b_KVNUS	290024325_W5 290024325_W5 290024325_W5	i			
	phore Array semid	ys owner	perms	nsems						
[oper@local 3b/k17kh03b GPU Device	_KVNYS_2900	024325			ata0/k17kł	103b/k17kh03b	_KVNYS_2900	24318.vdif 14	495559072 /data]	l/k17kh0
SAMPLEFILEB Measured ti Test passed [oper@local	me for para	allel execu						21-53		- 74
								Koros Actrony		actitute

Korea Astronomy & Space Science Institute

Preliminary Result1

✤ R17289c

- 2Gbps (512 MHz BW), 1 channel, KVN 3 stations data was filtered and used for correlation.
- SW correlation was conducted.
- In this result, only KVN Tamna – Ulsan Baseline is displayed.

Preliminary Result2 To confirm the SW DF performance in data analysis with AIPS Correlation was conducted for the same data. Plot file version 10 created 03-SEP-2018 16:26:45 3C273 289CC03R.MSORT.1 Freq = 43.0060 GHz, Bw = 32.000 MH Calibrated with CL # 3 but no bandpass applied 200 200 -200 -204 -200 2.0 DFB (r17289c 2Gbps→1Gbps) 1.0 5 6 8 5 8 Plot file version 6 created 31-AUG-2018 14:12:32 3C273 289C31TH.MSORT.1 0 4304004007**0**31401401**7**02**0**0230 0.0 4304004007031 Ff Freq = 43.0060 GHz, Bw = 32.000 MH Calibrated with CL # 3 but no bandpass applied 430400400703140140140200230 200 FREQ MHz FREQ MHz -200 -200 **R17289c(1Gbps)** 40 3.0 2.0 1.0 11 5 6 7 0.0 43010430404307043**#30**D104314043170432004323043260 200 FREQ MHz -200 2.0 1.0 430104304043070434300104314043170432004323043260 FREQ MHz Lower frame: Milli Ampl Jy Top frame: Phas deg Vector averaged cross-power spectrum Several baselines displayed Timerange: 01/02:43:26 to 01/02:44:56

Future works

Full data filtering for verification

- 1st: using KaVA data
- 2nd: using EAVN especially with JVN
- Detail comparison work is expected
- Using Full data with SW DFB, the correlation will be scheduled
- To reduce the processing time
 - SW optimization and modification will be done for parallel processing with 2 GPU board.

