Magnetodisc Theory

Nicholas Achilleos University College London July 2, 2018

- We wish to *quantify* some aspects of how plasma disc properties in rapidly rotating magnetospheres affect field structure.
- Our main reference point is Caudal's theory (JGR, 1986) which solves equation of force balance between magnetic 'J × B' force, centrifugal force and pressure gradient. Here, J denotes *current density* (vectors in bold typeface) and B is magnetic field.
- The system is assumed to be *axisymmetric* with parallel rotation and magnetic axes, and poloidal field (i.e azimuthal component $B_{\phi} = 0$).

- Axisymmetric assumption also means that azimuthal gradients in all quantities (field components, plasma pressure, plasma properties) are zero: $\frac{d}{d\phi} \equiv 0$.
- Although a strong assumption, axisymmetry is commonly used in modelling the so-called 'middle magnetospheres' of Jupiter and Saturn which, from an observational point of view, show a structure which is well approximated by axisymmetry about the planet's magnetic (dipole) axis.
- The axisymmetric assumption implies that the only non-zero component of $\bf J$ is the azimuthal current density J_{ϕ} . (Why?)

Return to our simple, axisymmetric disc. We start in spherical polar coordinates, and define the radial and meridional field components by using magnetic *Euler* potentials α and β :

$$\mathbf{B} = \nabla \alpha \times \nabla \beta$$

$$\beta = \mathbf{a}\phi, \alpha = \alpha(\mathbf{r}, \theta)$$
(1)

a = planet radius (length scale).

Hence:

$$B_r = \frac{a}{r^2 \sin \theta} \frac{d\alpha}{d\theta} \tag{2}$$

$$B_{\theta} = \frac{-a}{r \sin \theta} \frac{d\alpha}{dr} \tag{3}$$

Link field structure and current with Ampère's Law:

$$\nabla \times \mathbf{B} = \mu_o \mathbf{J}$$

$$(\nabla \times \mathbf{B})_{\phi} = \frac{a}{r} \left[\frac{\partial}{\partial r} \left(\frac{-1}{\sin \theta} \frac{\partial \alpha}{\partial r} \right) - \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial \alpha}{\partial \theta} \right) \right] \tag{4}$$

Bridge between J and plasma properties comes from force balance:

$$\mathbf{J} \times \mathbf{B} \approx \nabla P - (P/(2kT))m_i \rho \omega^2, \tag{5}$$

where P denotes plasma pressure, T is temperature, m_i is mean ion mass (constant along field line), ρ is cylindrical radial coordinate and ω is ang. vel.

Ideal gas law means that P/(2kT) is half the total particle number density (i.e. ion num. dens. in quasi-neutral plasma).

Caudal nicely demonstrates that (given without proof here):

$$\frac{\partial^{2} \alpha}{\partial r^{2}} + \frac{(1 - x^{2})}{r^{2}} \frac{\partial^{2} \alpha}{\partial x^{2}} = -\frac{\mu_{o}}{a^{2}} \rho^{2} \exp\left(\frac{\rho^{2} - \rho_{0}^{2}}{2l^{2}}\right).$$

$$\left[\frac{dP_{0}}{d\alpha} + \frac{P_{0}a}{l^{2}B_{\theta 0}}\right]$$
(6)

- Susbcript '0' denotes equatorial quantities magnetically conjugate to the point with coordinates (r, x) (with $x = \cos \theta$).
- Scale length I given by $I^2 = 2kT/(m_i\omega^2)$. Illustrates the competition between thermal energy and centrifugal confinement of 'hot' and 'cold' plasma.
- ▶ Right side of equation is source function $g(r, x, \alpha)$.
- Analytical form for solution may be derived, but since g depends on field structure, actual solution obtained numerically, starting with pure dipole as first 'iteration'.

In practice, one 'builds' g on the equator from spacecraft observations, then integrates throughout volume to obtain a field / plasma model.

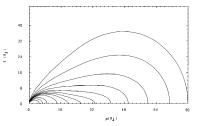
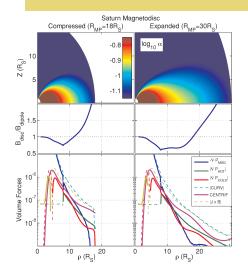


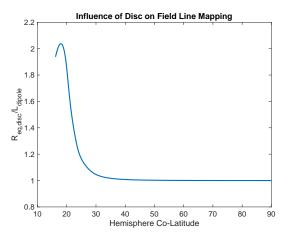
Fig. 6. Meridian plane projection of magnetospheric field lines computed by the present model, in cylindrical coordinates (ρ , ρ), assuming a magnetopause subsolar point distances $R_{\rm Q} \approx 80~R_{\rm p}$. The model is valid for the noon meridian and not suitable for latitudes higher than $\sim 50^{\circ2}$.

Caudal's solution shows disc-like field shape in a 'middle magnetosphere'.



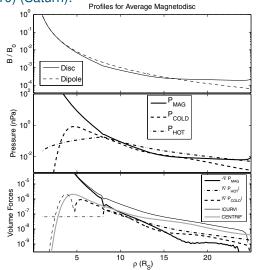
- Advantage: can model 'hot' and 'cold' plasma populations - 'hot' pressure is uniform along field. (Why?)
- Achilleos, Guio and Arridge (2010) repeated for Saturn, using data from Cassini. Studied effect of system size on field.
- Hot plasma pressure varies significantly - can change 'competition' between pressure grad. and centrif. force.

Example of quantifying the 'stretching' of the dipole field by the current sheet / disc.

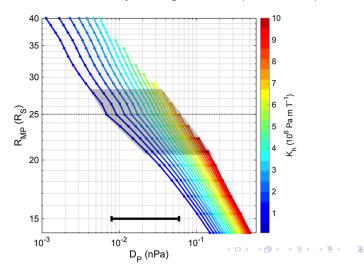


- ► Toy models can be useful 'Sacrifice realism, gain insight'.
- Achilleos, Guio and Arridge considered a toy model of a rigidly corotating disc with distinct hot (carries pressure) and cold (isothermal, carries mass) components.
- By considering the toy source function, they identified a transition distance ρ_T , for $\rho >> \rho_T$ centrif. force >> pressure gradients.
- $\rho_T^2 = 2\chi I^2 \beta_{hot}/\beta_{cold}.$
- Equatorial $B \propto \rho^{-\chi}$.

Connecting χ and force balance, Achilleos, Guio and Arridge (MNRAS, 2010) (Saturn):



From Sorba et al. (JGR, 2017) - Saturn model used to estimate solar wind pressure, and behaviour of system size. Follow-up study for further modelling of the observations made by *Pilkington et al.* (JGR, 2015).



What about pressure anisotropy?

- Non-zero $P_{||} P_{\perp}$ makes pressure force depend on 'shape' of field, as well as pressure gradients.
- Non-isotropic plasma also experiences a force related to the field structure and the 'averaged' mirror force.
- For more detail in this context, see Nichols, Achilleos and Cowley (JGR, 2015).

Comparing Astrophysical Systems

	MAGNETO-	POLARS / IPS	GALACTIC
	DISCS		DISCS
DISC	Plasma	Accretion	Star
	loading /	onto	formation /
FORMATION	outflow	white dwarf	kinematics
MAIN	Centrifugal	Magnetic	Gravity
FORCES	Magnetic	Gravity	
	Pressure		
TRANSPORT	Flux Tube	Viscous Spread	Orbital Motion
MODES	Interchange	Blobby Accretion	Disc Heating
SCALE	Tens of	Tens of	Tens of
	planet. radii	white dwarf	kiloparsecs
	•	radii	•

Comparing Astrophysical Systems

	MAGNETO-	POLARS / IPS	GALACTIC
	DISCS		DISCS
ORIGIN OF	Planet	Gravity;	Grav.
DISC	Rot'n;	Magnetic	potential of
ANG. VEL.	Magn. field	coupling;	large-scale
	M-I coupling	Spin-Orbit Equilib.	mass distrib'n

More details in notes on 'Astrophysical Discs' (http://www.ucl.ac.uk/~ucapnac).

Thank You for Listening

... and enjoy the Lab exercises! (Visualizing and interpreting magnetodisc models).