
Introduction to CUDA Programming
(Compute Unified Device Architecture)

Jongsoo Kim
Korea Astronomy and Space Science Institute

@COMAC 2018 Workshop

Summit #1, Linpack: 122.3 Pflos/s
4356 nodes, 8.8MW

two 22-core Power 9 CPU+six NVIDA
Tesla V100 GPUs

www.top500.org

www.top500.org, Jun 20158

Performance, GFLOPS/s

Memory bandwidth, GB/s

NVIDIA GPU Roadmap

Tesla K40:
single precision 5.04Tflops

Geforce Titan X:
single precision 6.6Tflops

Tesla P100:
single precision 10.6Tflops

Tesla V100:
single precision 14 Tflops

Astronomy Applications of GPU
• N-body simulations
• Fluid HD and MHD simulations
• Radiative Transfer
• Data processing, e.g., radio astronomy
• etc…
• ADS (search “GPU” in abstract)

– 10 papers in 2007
– 13 papers in 2008
– 33 papers in 2009
– 81 papers in 2010
– 99 papers in 2011
– 140 papers in 2012
– 164 papers in 2013
– 182 papers in 2014
– 221 papers in 2015
– 254 papers in 2016
– 379 papers in 2017

0

100

200

300

400

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Chart Title

NVIDA TESLA V100 SXM2

• CUD A, Tensor Cores:
5140+640

• NVLink: 300 GB/s
• HBM2: 900GB/s
• Unified Memory

• 7.8 TFLOPS of FP64
• 15.7 TFLOPS of FP32
• 125 TFLOPS of Tensor

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 19

Figure 11. Tesla P100 Accelerator (Front)

Figure 12. Tesla P100 Accelerator (Back)

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 19

Figure 11. Tesla P100 Accelerator (Front)

Figure 12. Tesla P100 Accelerator (Back)

NVLink:
50 GB/sec bi-direction per connection
300GB/sec for six connections per GPU

NVIDIA D
GX-2

Pascal Unified Memory

GP100 Pascal Whitepaper Unified Memory

NVIDIA Tesla P100 WP-08019-001_v01.1 | 27

Pascal GP100 Unified Memory
Expanding on the benefits of CUDA 6 Unified Memory, Pascal GP100 adds features to further simplify
programming and sharing of memory between CPU and GPU, and allowing easier porting of CPU parallel
compute applications to use GPUs for tremendous speedups. Two main hardware features enable these
improvements: support for large address spaces and page faulting capability.

GP100 extends GPU addressing capabilities to enable 49-bit virtual addressing. This is large enough to
cover the 48-bit virtual address spaces of modern CPUs, as well as the GPU's own memory. This allows
GP100 Unified Memory programs to access the full address spaces of all CPUs and GPUs in the system as
a single virtual address space, unlimited by the physical memory size of any one processor (see Figure 21).

Memory page faulting support in GP100 is a crucial new feature that provides more seamless Unified
Memory functionality. Combined with the system-wide virtual address space, page faulting provides
several benefits. First, page faulting means that the CUDA system software does not need to synchronize
all managed memory allocations to the GPU before each kernel launch. If a kernel running on the GPU
accesses a page that is not resident in its memory, it faults, allowing the page to be automatically
migrated to the GPU memory on-demand. Alternatively, the page may be mapped into the GPU address
space for access over the PCIe or NVLink interconnects (mapping on access can sometimes be faster than
migration). Note that Unified Memory is system-wide: GPUs (and CPUs) can fault and migrate memory
pages either from CPU memory or from the memory of other GPUs in the system.

Figure 21. Pascal GP100 Unified Memory is not Limited by the
Physical Size of GPU Memory.

With the new page fault mechanism, global data coherency is guaranteed with Unified Memory. This
means that with GP100, the CPUs and GPUs can access Unified Memory allocations without any
programmer synchronization. This was illegal on Kepler and Maxwell GPUs because coherency could not
be guaranteed if the CPU accessed a Unified Memory allocation while a GPU kernel was active.

� Note: As with any parallel application, developers need to ensure correct synchronization to avoid data
hazards between processors.

GP100 Pascal Whitepaper Unified Memory

NVIDIA Tesla P100 WP-08019-001_v01.1 | 28

Finally, on supporting operating system platforms, memory allocated with the default OS allocator (for
example, malloc or new) can be accessed from both GPU code and CPU code using the same pointer (see
Figure 22). On these systems, Unified Memory can be the default: there is no need to use a special
allocator or for the creation of a special managed memory pool. Moreover, GP100's large virtual address
space and page faulting capability enable applications to access the entire system virtual memory. This
means that applications are permitted to oversubscribe the memory system: in other words they can
allocate, access, and share arrays larger than the total physical capacity of the system, enabling out-of-
core processing of very large datasets.

Certain operating system modifications are required to enable Unified Memory with the system allocator.
NVIDIA is collaborating with Red Hat and working within the Linux community to enable this powerful
functionality.

Figure 22. With Operating System Support, Pascal is Capable of Supporting Unified
Memory with the Default System Allocator.
(Here, malloc is all that is needed to allocate memory accessible from any CPU or GPU in the
system.)

Benefits of Unified Memory

There are two main ways that programmers benefit from Unified Memory.

x Simpler programming and memory model. Unified Memory lowers the bar of entry to parallel
programming on GPUs by making explicit device memory management an optimization, rather than a
requirement. Unified Memory lets programmers focus on developing parallel code without getting
bogged down in the details of allocating and copying device memory. This makes it easier to learn to
program GPUs and simpler to port existing code to the GPU.

x But it is not just for beginners; Unified Memory also makes complex data structures and C++ classes
much easier to use on the GPU. On systems that support Unified Memory with the default system
allocator, any hierarchical or nested data structure can automatically be accessed from any processor
in the system. With GP100, applications can operate out-of-core on data sets that are larger than the
total memory size of the system.

Contents

• GPGPU and Tesla GPU cards
• CUDA exercises
– Execution configuration (hello world)
– Global Memory (vector sum)
– Shared Memory (dot product, matrix

multiplication)
– Texture Memory (heat equation)
– Constant Memory (??)
– Unified Virtual Memory (cuda6)
– cufft library

Languages for GPGPU

• NVIDIA CUDA C/C++
• OpenCL
• PGI CUDA Fortran
• OpenACC Directives
• PyCUDA

Libraries

• cuFFT (Fast Fourier Transforms)
• cuBLAS (Basic Linear Algebra Subroutines)
• cuSPARSE (Sparse Matrix Routines)
• cuSOLVER (Dense and Sparse Direct Solvers)
• NPP (Image & Video Processing Primitivies)
• CUDA Math Library
• Thrust (Templated Parallel Algorithms & Data

Structures)

Processing flow

Bottlenecks
– PCIe bus: 16GB/s
– Memory BW:
148 GB/s for Tesla S2050
288 GB/s for Tesla K 40
336.5 GB/s for Titan X
900GB/s for V100
– Memory latency:

400-800 clock cycles

Device Memory Space

• From outside of the NARIT
ssh –p 22240 –Y guest@stargate.narit.space

• From inside of the NARIT
ssh –Y pollux

mkdir –p userid/cuda_tutorial
• cd userid/cuda_tutorial
• cp ~guest/jskim/cuda_tutorial/* .
•

Access to a NARIT GPU server

cuda environment variables

• Include the following two lines in .bashrc
– export PATH=/usr/local/cuda/bin:$PATH
– export LD_LIBRARY_PATH=/usr/local/cuda/lib

64

deviceQuery

• cd /home/guest
• ./usr/local/cuda/bin/cuda-install-samples-

9.2.sh .
• /home/guest/NVIDIA_CUDA-9.2_Samples

/1_Utilities/deviceQuery/deviceQuery

Demo of nbody

• cd /home/guest/NVIDIA_CUDA-9.2_Samp
les/5_Simulations/nbody

• ./nbody –benchmark -cpu
• ./nbody –benchmark –numdevices=1
• ./nbody –benchmark –numdevices=2

Exercise 1: Hello world

#include <stdio.h>

void hello_world(void) {
printf(“Hello World\n”);

}

int main (void) {
hello_world();
return 0;

}

Exercise 1: Hello world

#include <stdio.h>

__global__ void hello_world(void) {
printf(“Hello World\n”);

}

int main (void) {
hello_world<<<1,5>>>();
cudaDeviceReset();
return 0;

}

Compile and Run

• nvcc hello.cu
• ./a.out

Hello World
Hello World
Hello World
Hello World
Hello World

C Language Extensions

• Function Type Qualifiers
__global__

executed on the device (GPU)
callable from the host (CPU) only
functions should have void return type
any call to a __global__ function must specify the
execution configuration for that call

__device__
executed on the device
callable from the device only
…

Grid, Block, Thread

• Tesla V100-SXM2-16GB
– Maximum dimension size of a grid
(2147483647, 65535, 65535)
– Maximum dimension size of a block
1024x1024x64
– max. # of threads per block
1024

- Warp size: 32

•~guest/NVIDIA_CUDA-9.2_Samples/1_Utilities/deviceQuery/deviceQuery
•~guest/NVIDIA_CUDA-9.2_Samples/1_Utilities/bandwidthTest/bandwidthTest

C Language Extensions

• Execution configuration
<<<blocksPerGrid,threadsPerBlock>>>
<<<1,1>>>
<<<1024,1024>

dim3 blocksPerGrid(16,16,1)
dim3 threadsPerBlock(1024,1,1)
<<<blocksPerGrid,threadsPerBlock>>>

C Language Extensions

• Built-in Variables
blockIdx = (blockIdx.x, blockIdx.y, blockIdx.y)

three unsigned integers, uint3
threadIdx = (threadIdx.x, threadIdx.y, threadIdx.y)

three unsigned integers, uint3

• Built-in Vector types
dim3:

Integer vector type based on unit3
used to specify dimensions

Ex2: Execution Configuration

• nvcc exec_conf_1d.cu
• nvcc exec_conf_2d.cu
• ./a.out

Exercise 3: Vector sum

gcc vector_sum.c
nvcc vector_sum_block.cu
nvcc vector_sum_thread.cu
nvcc vector_sum_tb.cu
nvcc vector_sum_block.unified.cu

Exercise 3: Vector sum

#include <stdio.h>

const int N=128;

void add(int *a, int *b, int *c) {
int i = 0;
while (i < N) {

c[i] = a[i] + b[i];
i += 1;

}
}

Exercise 3: Vector sum
int main (void) {

int a[N], b[N], c[N];

for (int i=0; i<N; i++) {
a[i] = -i;
b[i] = i * i;

}

add (a, b, c);

for (int i=0; i<N; i++) {
printf("%d + %d = %d\n", a[i],b[i],c[i]);

}

return 0;
}

Exercise 3: Vector sum

const int N=128;

void add(int *a, int *b, int *c) {
int i = 0;
while (i < N) {

c[i] = a[i] + b[i];
i += 1;

}
}

const int N = 128;

__global__ void add(int *a, int *b, int *c) {
int tid = threadIdx.x + blockIdx.x *

blockDim.x;
while (tid < N) {

c[tid] = a[tid] + b[tid];
tid += blockDim.x * gridDim.x;

}
}

int main (void) {
int a[N], b[N], c[N];
int *dev_a, *dev_b, *dev_c;

// allocate the memory on the GPU
cudaMalloc((void**)&dev_a, N * sizeof(int));
cudaMalloc((void**)&dev_b, N * sizeof(int));
cudaMalloc((void**)&dev_c, N * sizeof(int));

// fill the arrays 'a' and 'b' on the CPU
for (int i=0; i<N; i++) {

a[i] = -i; b[i] = i * i;
} // copy the arrays 'a' and 'b' to the GPU

cudaMemcpy (dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy (dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

add<<<N,1>>>(dev_a, dev_b, dev_c);

// copy the array 'c' back from the GPU to the CPU
cudaMemcpy (c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

// display the results
for (int i=0; i<N; i++) {

printf("%d + %d = %d\n", a[i],b[i],c[i]);
}
// free the memory allocated on the CPU

cudaFree (dev_a); cudaFree (dev_b); cudaFree (dev_c);
return 0;

}

int main (void) {
int *a, *b, *c;
cudaMallocManaged (&a, N);
cudaMallocManaged (&b, N);
cudaMallocManaged (&c, N);

// fill the arrays 'a' and 'b' on the CPU
for (int i=0; i<N; i++) {

a[i] = -i; b[i] = i * i; }
add<<<N,1>>>(a, b, c);
cudaDeviceSynchronize();
for (int i=0; i<N; i++) {

printf("%d + %d = %d\n", a[i],b[i],c[i]); }
cudaFree (a); cudaFree (b); cudaFree (c);
return 0;

}

AI (Arithmetic Intensity)
• Definition: number of operations per byte
• AI for a[N]+b[N]

N ops / 8N bytes = 1/8
• AI for A[N][N] * B[N][N]

2N3 ops/ 8N2 bytes = N/4
• If AI ~ 1, performance = AI x memory BW
• If AI >~ 40(2.x),15(1.x), can hide latency of

global memory à better performance

Exercise 5: Matrix Multiplication

• gcc –std=c99 matmul.c
• nvcc –Xptxas –v –arch sm_20 matmul_global.cu
• nvcc –Xptxas –v –arch sm_20 matmul_shared.cu

Exercise 5: Matrix Multiplication

void MatMul(const float * A, const float * B, float * C) {

for (int row=0; row<N; ++row)
for (int col=0; col<N; ++col) {

float Cvalue = 0;
for (int k = 0; k < N; ++k) {
Cvalue += A[row*N+k]*B[k*N+col];

}
C[row*N+col] = Cvalue;

}
}

M-M Multiplication: Global

Compute Capability

Reducing Global Memory Traffic

• Reducing global memory access
enhances performance

• tiling: partition of data into subsets
called tiles, such that each tile fits into
fast (shared) memory

Matrix Mul: tiling

Matrix-Multiplication: shared

Register
• Fastest
• Thread scope, thread

lifetime
Local
• Does not exist
• Abstraction of thread

scope

Global memory
• Implemented in DRAM
• High-access latency:

400-800 cycles
• Finite bandwidth:

148GB/sec for S2050
• Potential of traffic

congestion
• Grid scope, application

lifetime

Shared memory

• Extreme fast,
highly parallel

• Block scope,
kernel lifetime

Constant memory

• Space for
“constant” data
during a kernel
execution

• 64kB per a GPU
board

• Cached on chip
• Fast if threads of

a half warp reads
the same
address

Texture memory

• cached on
chip

• read only
• designed for

graphics
appllications

• Optimized 2D
“spatial
locality”

Exercise 4: Dot-Product

gcc std=c99 dot_product.c
nvcc dot_product.cu
nvcc –arch sm_13 dot_product_double.cu
nvcc -l cublas dot_product_cublas.cu

Exercise 4: Dot Product
#include <stdio.h>
#define sum_squares(x) (x*(x+1)*(2*x+1)/6)

const int N = 2048;

float dot_product(float *a, float *b) {

float c = 0.0f;
for (int i=0; i<N; i++)

c += a[i]*b[i];
return c;

}

int main (void) {

float a[N], b[N];

for (int i=0; i<N; i++) {
a[i] = (float) i;
b[i] = (float) i;

}

float c = dot_product(a,b);

printf("Dot prodoct of a and b = %f\n", c);
printf("sum_squares of (N-1) = %f\n",

sum_squares((float)(N-1)));

return 0;
}

Reduction

blockIdx 0

blockIdx 3blockIdx 2

blockIdx 1

cuBLAS

• Basic Linear Algebra Subprograms on CUDA
– cublasHandle_t handle=0;
– cublasCreate(&handle)
– cublasSdot(handle,N,dev_a,1,dev_b,1,&c);
– cublasDestroy(handle);

Exercise 6: constant memory

• nvcc –arch sm_70 const_mem.cu

Spatial Locality

Heat equation T
yxt

T
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
=

∂

∂
22

κ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

+−
+

Δ

+−
=

Δ

− −+−+
+

2

1,,1,

2

,1,,1,
1

, 22

y

TTT

x

TTT

t

TT n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji κ

yxh

TTTT
h

t
T

h

t
T n

ji
n
ji

n
ji

n
ji

n
ji

n
ji

Δ=Δ=

+++
Δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−= −+−+

+

 where

)(41 1,1,,1,12,2

1
,

κκ

κ4
 when)(

4

1 2

1,1,,1,1
1

,

h
tTTTTT n

ji
n
ji

n
ji

n
ji

n
ji =Δ+++= −+−+
+

Exercise 7: heat equation

• gcc –std=c99 heat.c
• nvcc –arch sm_20 heat_global.cu
• nvcc –arch sm_20 heat_texture_1d.cu
• nvcc –arch sm_20 heat_texture_2d.cu

Continuous vs discrete Fourier
Transform

𝐻 𝑓 =	% ℎ 𝑡 𝑒)*+,-.𝑑𝑡
0

)0

𝐻 =	1 ℎ 𝑘 𝑒)*+,34/6
6)7

489

					𝑛 = 0,1, …𝑁 − 1

Fourier Transform of a rectangular
pulse

ℎ 𝑡 = 𝐴					 𝑡 < 𝑇9
															= 0						 𝑡 > 𝑇9

𝐻 𝑓 = 	% 𝐴𝑒)*+,-.𝑑𝑡
EF

)EF

= 𝐴% cos 2𝜋𝑓𝑡 𝑑𝑡 − 𝑗𝐴% sin 2𝜋𝑓𝑡 𝑑𝑡 =
𝐴
2𝜋𝑓

sin 2𝜋𝑓𝑡 |)EF
EF

EF

)EF

EF

)EF
= 2𝐴𝑇9

PQR(+,EF-)
+,EF-

Radio astronom
y 101

Fourier Transform

cuFFT
cufftPlanMany(….);
cufftExecR2C(plan, idata, odata)

• total number of samples:
250*2^19=131,072,000

• 7~16 Gsample/sec (3.5~8
GHz)

• peak performance: ~
570Gflops (flops: 2.5 N
log2(N) for R2C FFT)

• for a given number of
samples, FFT performance is
higher at small fft points

570 Gflops

1024 16384 262144

First	Spectra	with	45-m	Telescope
(Dec.	25,	2017)

Jan.16, 2018 | TM
| KASI-NAOJ F2F

Results of NRO test observa
tions using a GPU spectrom

K-GPU Spectrometer

SAM45

SiO (v=2, J=1-0) @ 42.8GHz SiO (v=1, J=1-0) @ 43.1GHz

62

Useful information

• http://developer.nvidia.com
• CUDA toolkit 9.2
• Getting Started Guide (installation)
• CUDA C programming Guide

