Cosmic-Ray and Gamma-Ray Studies with Fermi LAT and LHAASO

คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล FACULTY OF SCIENCE, MAHIDOL UNIVERSITY

Warit Mitthumsiri

Department of Physics, Faculty of Science, Mahidol University warit.mit@mahidol.ac.th

ThaisCube Meeting Chiang Mai, Thailand Aug 11, 2023

Institute of High Energy Physics Chinese Academy of Sciences

Cosmic Rays (CRs) and Gamma Rays (y)

- CRs = high-energy particles and in space
- ~89% protons, ~9% He, small fraction of heavy nuclei, e⁻, e⁺, γ, etc
- Sources: Supernovae, pulsars, AGNs, stellar winds, Sun, etc

ThaisCube 2023

Primary and secondary CRs

ThaisCube 2023

GeV Gamma-Ray Sky before Fermi LAT

ThaisCube 2023

GeV Gamma-Ray Sky after Fermi LAT

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 247:33 (37pp), 2020 March

ThaisCube 2023

CR proton spectrum

ThaisCube 2023

Give me a break! (CR protons)

ThaisCube 2023

How to Explain the Break

ThaisCube 2023

CR-induced y-ray emission of Earth

ThaisCube 2023

Mitthumsiri et al.

Excess e⁺/e⁻ at high energy

Combined e⁻+e⁺ spectrum

ThaisCube 2023

Constrain some parameters of pulsars

Bright γ-ray pulsars

Anisotropy Measurements

- Latest measurements by Fermi LAT and AMS-02 show that CR e⁻/e⁺ are consistent with being isotropic
- Dipole upper limit by AMS-02 for E > 16 GeV:
 - e⁻: δ < 0.005
 - PRL 122, 101101 (2019)
 - e⁺: δ < 0.019
 - PRL 122, 041102 (2019)

ThaisCube 2023

Constrain some parameters of DM

17/30

Pulsars and Gravitational Wave Background

ThaisCube 2023

Large High Altitude Air Shower Observatory (LHAASO)

ThaisCube 2023

LHAASO

300 m, 60 cells . 150 m, 30 units 150 m, 30 units 600 400 200 ۲ ۲ -200 Aharonian et al., Chinese Phys. C 45 085002 Aharonian et al., Chinese Phys. C 45 025002 Aharonian et al., Eur. Phys. J. C 81, 657 -400 -600 -600 -400 -200 200 400 0 X (m)

ThaisCube 2023

Mitthumsiri et al.

600

110 m, 22 cells

50 m, 30 cells

2365 ED

LHAASO and Fermi LAT Energy

ThaisCube 2023

Gamma-Ray Burst GRB221009A

CR Spectral Measurement (by KM2A)

T. Antoni et al., Astropart. Phys. 24, 1 (2005).

H. Zhang, et al. (2023), ICRC2023

Shadow band: systematic uncertainty

CR Anisotropy from Solar Storm

Preliminary hourly WCDA skymaps centered at the zenith direction, out to a zenith angle of 45 degrees (outer circle), for $30 < N_{hit} < 100$ for each hour UT of 2021 Nov 4

ThaisCube 2023

Sidereal Anisotropy from LHAASO-WCDA

W. Liu, et al. (2023), ICRC2023

- Challenging to model
- Patterns do not vary much with energy
- May need to use KM2A data for E > 100 TeV

ThaisCube 2023

CR Moon shadow

ThaisCube 2023

Mitthumsiri et al.

Not yet...

ThaisCube 2023

Mitthumsiri et al.

29/30

Summary

ThaisCube 2023

CR electrons (e⁻) and positrons (e⁺)

- CR = ~1% e⁻, ~0.1% e⁺
- High-energy e⁻/e⁺ lose energy rapidly → great probe of local (a few kpc) universe
- Spectral index (~3.1) much softer than proton (~2.7)
- e⁺ created through e⁻/e⁺ pair, so if e⁻/e⁺ have the same origin, we expect positron fraction e⁺/(e⁻+e⁺) ~ 0.5
- Measured e⁺/(e⁻+e⁺) ~ 0.05 at 10 GeV, implying that e⁺ are mostly secondary while e⁻ are mostly primary

This model predicts decreasing e⁺/(e⁻+e⁺) with energy

Additional source(s) of e⁺

Known (pulsars) vs new (DM) physics

Some models suggest that $e^+/(e^-+e^+)$ at high energy exhibits sharp cutoff for dark matter and gradual decline for pulsars

AMS-02 Collaboration (https://www.quantumdiaries.org/tag/ams/) We expect larger anisotropy for e⁺ from pulsars than from DM

e⁺/(e⁻+e⁺) cutoff explained with DM

e⁺/(e⁻+e⁺) cutoff explained with pulsars

Anisotropy

