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The Sun is a Giant Heat Engine

It takes approximately
one million years for the
energy to be conducted
(by radiation) to the outer
part of the sun.

Near the surface,
convective motion sets in

Approximately 100,000
years of sunlight is stored
in the convection zone
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The «-effect

The Heat Engine Powers K

a Magnetic Dynamo

Magnetic fields within the
Sun are stretched out and
wound around the Sun by
differential rotation

This is called the omega-
effect after the Greek letter
used to represent rotation.

The Sun's differential
rotation with latitude can take
a north-south oriented
magnetic field line and wrap
it once around the Sun in
about 8 months.

http://solarscience.msfc.nasa.gov/dynamo.shtml

Hale’s Polarity Law:

The polarity of the leading spots in one hemisphere

is opposite that of the leading spots in the other hemisphere

and the polarities reverse from one cycle to the next.

Cyele 21

Cyele 22




The Heat Engine Powers K
a Magnetic Dynamo

IceCube
Twisting of the magnetic field
lines is called the alpha-effect
after the Greek letter that
looks like a twisted loop.

Early models of the Sun's

dynamo assumed that the Hale's Polarity Law:
twisting is produced by the = s temetiommns
effe CtS Of th e S u n 'S rotatl O n and the polarities reverse from one cycle to the next.

on very large convective
flows that carry heat to the cxae
Sun's surface.

The «-effect

Cyele 22

http://solarscience.msfc.nasa.gov/dynamo.shtml



The Heat Engine Powers K
a Magnetic Dynamo &
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More recent dynamo models assume
that the twisting is due to the effect of
the Sun's rotation on the rising "tubes"
of magnetic field from deep within the

S Sun.
The w-effect
The twist produced by the alpha effect Hale’s Polarity Law:
makes sunspot groups that ODEY “JOY'S i ppatera o hecwting sy n e ot hemipher
IaWu _ the re|atI0n Of the angle between and the polarities reverse from one cycle to the next.
sunspots in a group to location on the
sun. Cyele 21

It also makes the magnetic field
reverse from one sunspot cycle to the
next (Hale’s Law).

The «-effect

Cyele 22

http://solarscience.msfc.nasa.gov/dynamo.shtml
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Magnetic Energy Powers Flares (1]

« Somewhere in this
picture, particles are
being accelerated to
GeV energy.

« Can you tell where?
* | certainly cannot!

* Possibly different
mechanisms are even
operating at the same
time.
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What Does This Have to do
with Antarctica?
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The IceCube Project: A New View of the
Universe from the South Pole
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How does IceCube “see” a neutrino?

Like its predecessor, AMANDA, the basic
component of lceCube is the sensor that
transforms light into electrical signals. A sensor is
a photomultiplier tube housed in a
glass pressure vessel; lceCube
will boast nearly 5000. The
technology used in lceCube
will be more advanced than
that of AMANDA. lceCube
will have “smart”

Pewer,
/;/ Signal In/Out

Electranics

Photomultiplier

5ensors, Opiical .
meaning that Coupling Gel
each sensor will

contain a computer chip connected through the
internet to computers in scientists’ officesl It is not
too fanciful to think of the device as a cubic-
kilometer, continuously sensing computer.

Glass Pressure
Housing,
13" diameter

1400 m

2300 m
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The Surface Air Shower
e 9 Array (IceTop)

Developing and deploying
the surface air shower
detector is where | spent
most of my time, so | focus
on the unexpected results

E‘;ﬁnw Layer

from that part of the | lceCube
detector. AT 7D
It is also an important part L

of the collaboration with
Mahidol and Chiang Mai.
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\ IceTop Detectors

lceCube

 Blocks of clear ice

produced in tanks at
the Pole

Cherenkov radiation
measured by
standard IceCube
photon detectors

Two tanks separated
by 10 meters form a
station

18
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Getting to Antarctica:
Christchurch, NZ

19
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Installing the Detector “Tanks”

38t
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Fill Tanks with Water then
Just Let Them Freeze

21
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Removing Dissolved Air
Produces Perfectly Clear Ice
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- Dual degassing
units are seen

under 75 cm of ice

DOMSs are frozen
into the ice




G Finishing the Detector

lceCube

« After filling the void at
the top with perlite the
lid Is screwed down on
the tank.

* In about 100,000 years g |
these will fall off the
coast of Antarctica, to
the great surprise of
some fish or another.




' Solar Particles in IceTop

lceCube

{

|t never occurred to us originally that IceTop
could be used as a complement to the
neutron monitor network.

* This realization has developed over time, and
has been a significant part of my research for
several years.

« As part of a huge collaboration, one has to
find a niche in keeping with personal interest
and expertise.

24



The First Exfraterrestrial Event Detecfed-
| ~ by IceCube

IceTop and Spaceship Earth Observations of the Solar Flare
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Dec 13,2006 X3-Class Solar Flare (SOHO)

Neutron Monitor Counts/Sec (normalized to McMurdo 0130-0230)
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Dec 14, 2006 photograph of auroras near Madison, W1I


http://www.spaceweather.com/images2006/13dec06/eit_narrow.gif

primary cosmic rays
Upper atmospher:a/
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Chiang Mai, July 27, 2011

Muon Detector *

Particles with energy as low
as 1 GeV produce
secondaries that survive to
the surface

Rarely does a single
detector see more than one
secondary from a primary

Large detectors can have
high enough counting rates
to make statistically
significant measurements
of the primary flux

Conventional detectors

count muons or neutrons
26



Why IceTop Works as a GeV &=
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 Particle Spectrometer

lceCube

* Neutron monitors are comparatively
iInsensitive to the particle spectrum

 |lceTop detectors are thick (90 g/cm?) so the
Cherenkov light output is a function of both
the species and energy of incoming particles

 Individual waveform recording, and extensive
onboard processing, allow the return of pulse
height spectra with ten second time resolution
even at the kilohertz counting rate inherent to
the detector

27
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At the
South Pole,
spectra of
secondary
particles
“‘remember”
a lot of
information
about the
primary
spectrum.
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Solar Particle Spectrum Ll

Published in Ap J Letters
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Excess count rate
(averaged over
approximately one hour
near the peak of the
event) as a function of
pre-event counting rate.

Each point represents one
discriminator in one DOM.

By using the response
function for each DOM we
fit a power law (in
momentum) to the data
assuming that the
composition is the same
as galactic cosmic rays

The lines show this fit and
the one sigma
(systematic) errors

29
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IceTop and PAMELA
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Neutron Monitors and IceTop
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Good agreement (with
understanding of
viewing direction)
Continuous
determination of precise
spectrum

All information on
anisotropy comes from
the monitor network

Here we see the failure
of the “separability”
assumption in neutron
monitor network

analysis
31



Conclusions
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* |lceTop is a powerful new tool in the study of
energetic solar particles

| did not understand this when | agreed to
work on it as “a favor to a friend”

* Moral: Keep your eyes open — in physics an
opportunity is always there, one just has to
recognize it!

 Now we just hope that the sun has not gone
to sleep

32
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