

Research on High-energy Gamma-ray with Fermi LAT in Thailand

Warit Mitthumsiri

Department of Physics Faculty of Science Mahidol University

> The 2nd Thai-CTA Workshop on Astroparticle Physics (TCAP) Aug 18, 2021

Fermi LAT: Brief Description

- Launched in June 2008 to ~565 km altitude, observing entire sky every 3 hours
- Pair-conversion telescope designed to detect ~20 MeV to above 300 GeV photons
- 3 main systems
 - ACD
 - Tracker
 - Calorimeter
- ~3 m² geometric area
- Angular resolution of ~4° at 100 MeV, improving to better than 0.15° at above 10 GeV

Astrophysical γ-Ray Objects

Research at Mahidol University, Thailand

- Earth's γ-ray emission

Cosmic Ray (CR)

Energetic particles in space

- ~90% protons, ~9% He, and small fraction of heavy nuclei, e⁻, e⁺, γ, etc.
- Sources: Supernovae, AGNs, pulsars, stellar winds, Sun, etc.

Importance:

- Probes of interstellar and intergalactic environment
- Problems for space travel and electronics onboard satellites or airplanes
- Roles in evolution, carbon dating, and climate change?

CR-Induced γ-Ray Emission from Earth's Atmosphere

- Earth is extremely bright in γ ray due to proximity
- How Earth "looks" in γ ray–
- Emission peaks at ~50 km above ground

Earth's γ-Ray Spectrum

Fitting Procedure

Inferred CR Proton Spectrum from Earth's γ-Ray Emission

Red lines = <u>Best-fit CR models</u> to Earth's γ-ray measurement

Confirmed by later analyses

Earth's γ-Ray Zenith Profile

- Peak of profile moved over time due to LAT orbital decay
- Use data from $Peak < \Theta_{Zen} < Peak + 2.0^{\circ}$ so we can assume that these
 - γ rays were produced at ~50-km altitude (top of stratosphere)
- γ rays with Θ_{zen} < peak were produced at unknown altitude

Vertical Geomagnetic Cutoff Rigidity

Earth's magnetic field blocks CRs below cutoff rigidities for certain locations

Earth's Stratospheric γ-Ray Intensity Maps

Earth's γ-Ray Spectral Changes

Gamma-ray Space Telescope

"Breathing" of Earth's Atmosphere

The Sun affects the thermosphere and the mesosphere through UV and solar winds (see, e.g., Chang, L.C., et al. (2009), *Geophys. Res. Lett.*, 36, L15813)

Research at Mahidol University, Thailand

- Dark matter line search

Dark Matter (DM)

- DM = hypothetical particles which interact with ordinary matter or light very weakly, mainly through gravity only
- Measurements indicate that there is much more DM than ordinary matter in the universe
- DM particles might annihilate or decay into γ rays

40

DM Search with γ Rays

Spectral Line

Signal counts: 53.4 (4.26σ)

p-value=0.85, $\chi^2_{\rm red} = 14.3/21$

Use the Earth's γ -ray emission to calibrate and verify that the instrument has no spurious effects

Our DM Line Analysis

- 8 years of LAT data (2008 – 2016) between 40 – 300 GeV
- Define different regions around the Galactic center
- The background and dark-matter photon count spectra are modeled as

 $F_{\rm Bg}(E) = N_{\rm Bg}E^{-\Gamma_{\rm Bg}}$

 $F_{\rm DM}(E) = N_{\rm DM} \exp\left(-\frac{(E - E_{\gamma})^2}{2w^2}\right)$

 By varying the value of DM line (E_γ), we fit and compare the likelihood of Bg and Bg+DM models to determine the significance

DM Line Search Results

Research at Mahidol University, Thailand

- Clusters of high-energy γ-ray photons search

Most recent catalog (4FGL) above 50 MeV from 8 years of data include more than 5,000 sources, with ~1300 at no other wavelengths

Fermi LAT's Energy Overlap with Ground-based Detectors

Fermi LAT = Good sky coverage, but limited sensitivity above 100 GeV Ground-based detectors = Less coverage, but high sensitivity above 100 GeV

Clusters of High-energy γ rays

- Search for groups of >2 photons above 10 GeV within 1.0° radius and within 20, 96, and 192 minutes
- Analyze the Galactic plane (within ±10° latitude) and high-latitude regions separately

 Θ_{Zen}

/-ray

LAT's boresight

• More sensitive to hard-spectrum γ -ray flares Zenith

Data Set

- 10 years (2008 2018) above 10 GeV
- Θ_{Zen} < 100° (to avoid Earth's photons)
- ~850,000 photons analyzed

Source Types of Detected Clusters

POSSIBLE ASSOCIATIONS OF THE CLUSTERS DETECTED IN 192-MINUTE TIME WINDOW

🔳 Galactic plane 🛛 📕 High latitude

Cluster Search Summary

	Galactic×plane +		High latitude	
×	Number of total clusters	Number of clusters with no known counterpart	Number of total clusters	Number of clusters with no known counterpart
20-minute	* × 85 + ×	× 2 ×	31 +	2
× 96-minute	238*	× 5* +	36*	• + + • - + ×
192-minute	934**	39**	134**	< 1 ^{**} +
* Not in 20-minute search Janthaloet (2021)				

- Earth's γ-ray analysis
 - CR spectrum reconstruction
 - Instrument calibration
 - γ-ray monitor in space
 - CR spectral variation
 - Geographical γ-ray map
- Dark matter line emission analysis: no significant line found found in 8 years of data
- Clusters of high-energy photons analysis: some sources with no known counterparts are potentially newly discovered sources
- More to come

Back Up

Abstract

The Fermi Large Area Telescope (LAT) is a space-based gamma-ray observatory launched in 2008 and is currently still in operation with unprecedented capability. It has revolutionized our understanding of the GeV gamma-ray sky and cosmic ray (CR). Working at Mahidol University in Thailand, I am an affiliated scientist of the Fermi LAT Collaboration. My research with Fermi LAT largely involves analyzing the CR-induced gammaray emission of the Earth's atmosphere which is useful for the study of CR spectrum, the geomagnetic field, and the CR-air interactions. We search for sharp gamma-ray lines in the direction of the Galactic center which could hypothetically be emitted from dark matter decay. We also experiment with a different method to uncover faint transient gamma-ray sources at sub-TeV energy which may potentially be candidate targets for ground-based detectors such as CTA at higher energy ranges.