

สถาบันวิจัยดาราศาสตร์แห่งชาติ (องค์การมหาชน) National Astronomical Research Institute of Thailand (Public Organization)

MRES: technical evaluation of the spectrograph

Technical Report

Eugene Semenko, David Mkrtichian

- MRES (Middle Resolution Echelle Spectrograph) was built by Nanjing Institute of Optics and Technology, National Astronomical Observatories, CAS (China) and NARIT.
- Resolving power R = 15,000 in the spectral range 390-880 nm (slit 1.4", sampling approx. 2.1 px), two-pixel resolution is 17,000
- Cross-dispersed echelle spectrograph fed by fibre from one of the Nasmyth foci of the 2.4-m telescope of NARIT
- White-pupil design of the spectrograph with echelle grating at the pupil
- Peak efficiency of the spectrograph is 30% (w/o fibre)

General view of the spectrograph (right) and its optical scheme

Slit	Physical dimension	Dimension error
1	0.3 mm × 0.3 mm	±4µm
2	0.3 mm × 0.17 mm	±4µm
3	0.17 mm × 0.17 mm	±4µm

Manually changeable slits

The Nasmyth unit and its optical scheme.

Calibration unit contains a halogen lamp for flat fielding and a hole cathode Th-Ar lamp for wavelength calibration

Problems solved in this study

1)To measure of the spectral resolution with different slits

2)To study the influence of the scattered light on the results and to construct a model for the SL subtraction

3)To evaluate the total throughput of the spectrograph

4)To create an exposure calculator

Material and tools

- Observations with 2.4-m telescope in Dec 2019 and Jan 2020 (my programme), and technical nights in Nov 2020 (with David)
- Observed sources: stars with calibrated flux (HD 92558, HD 215012, HD 218045), hot stars with fast rotation (HD 88960, HD 188001), evening sky
- Data reduction: IRAF, REDUCE, HiFLEX or ... something custom

Pipeline Requirements

- Flexibility and modularity (scripting language, multiplatform, easy to modify the sequence of operations)
- High speed of reduction (multiply repeated reduction)
- Optimal method of data extraction (few implemented methods are preferable)
- Potential for adaptation to changes (new detector, different format of input data, etc)

 \Rightarrow a python-based pipeline written by Vadim Krushinskiy (UFU, Russia) was chosen for modification

Pipeline Structure

1) Python 3.8+

- 2) Short list of external packages available for installation with PIP
- 3) Each procedure is a single .py-file
- 4) Very simple installation
- 5) Works on Mac, Linux, and should work on Windowsbased computers

Pipeline Test and performance

Observational night

Hardware (laptop)

CPU Intel Core i5-6200U (@2.3 GHz) RAM 8 GB

10 files — ThAr SSD 256 GB

37 files - stars

30 files - bias

20 files – flat

PSFEX: PSF-based extraction took 7 min 54 sec **APEX**: Aperture-based extraction in 5 min 43 sec **FOX**: Flat-based extraction in 6 min 13 sec

PSFEX: 1986PASP...98..609H, 1998MNRAS.296..339N FOX: 2014A&A...561A..59Z

Software

Debian Sid (latest) Python 3.9.1 with the latest versions of packages installed using PIP

Parameters

Graphical output is off Frame section [660: 1580, 1:393] Aperture size is 1.1 of FWHM Does not include ThAr calibration SL subtraction if off (otherwise + approx. 50 sec)

Parameters of extraction

Trim area, aperture, etc

Aperture: 1.1 FWHM: no overlapping up to 7100 Å

Parameters of extraction

Crop size, aperture, etc

Comparison IRAF, Reduce, HiFLEX

Orders location and shape basic principles

- Average all flats and stellar spectra collected during the night (to eliminate effects of low SNR)
- Cluster analysis for the initial tracing
- Re-trace the reference image for a big number of reference points in each order
- Fit orders and FWHM using Chebyshev polynomials and Moffat function
- FWHM varies along the dispersion

Orders location and shape results

Orders location and shape results 4.0

FWHM is not uniform along the dispersion

Reasons:

- focus of the CCD camera
- optical aberrations of the CCD camera
- other(?)

Conclusions:

1) different slits require re-focusing

2) narrower slit does not solve the problem of small inter-order space.

Scattered light Sources and modelling

Sources of scattered light:

1) reflections and scattering on the optical and mechanical elements inside the 'box'

2) dust on the surfaces

3) accuracy of manufacturing of gratings

Model: smoothed combination of polynomials and splines

Scattered light Practical evaluation

- **Observational tests:**
- 1) bright stellar object or
- 2) uniformly illuminated fibre (flat field)
- 3) sky spectrum
- 1) 3) for different slits

Observational sets:

- Flat, slit 0.3×0.3 mm, $T_{exp} = 0.3$ s
- Flat, slit 0.3×0.17 mm, $T_{exp} = 0.7$ s
- Flat, slit 0.17×0.17 mm, $T_{exp} = 1.0 s$
- Sky, slit 0.3×0.3 mm, *T*_{exp} = 8.0 s

Practical evaluation

Practical evaluation

Flat field Aperture 1.6 FWHM Slit 0.3 × 0.3 mm

Level of SL varies from less than 5% to more than 40% (low SNR)

Averaged SL: 5-10%

Practical evaluation

Sky spectrum Aperture 1.6 FWHM Slit 0.3 × 0.3 mm

Level of SL varies from less than 5% to about 30% (low SNR)

Averaged SL < 5%

Practical evaluation

Sky spectrum, aperture 1.6 FWHM, slit 0.3×0.3 to 0.17×0.17 mm

Practical evaluation

Spectrum of sky

Practical evaluation

Spectrum of sky

Practical evaluation

Spectrum of sky

Conclusion: subtraction works with issues. The model needs for more detailed study

Order: 36, 4102-4193 Å

Spectral resolution Built-in evaluation

ThAr lines

Aperture 1.1 FWHM Slit 0.3 \times 0.3 mm Slit 0.3 \times 0.17 mm

Slit 0.17 × 0.17 mm

- Evaluation of *R* for each order with at least one emission line
- Evaluation of an averaged *R* for the whole range (normally, hundreds of lines)
- Information about *R* is written in FITS-header
 - PDF-document with report

Spectral resolution Results

<u>Slit 0.3 × 0.17 mm</u>	<u>Slit 0.17 × 0.17 mm</u>
<i>R</i> = 19,000	<i>R</i> = 18,000
FWHM = 2.39 pix	FWHM = 2.49 pix
335 lines	344 lines
	$\frac{\text{Slit } 0.3 \times 0.17 \text{ mm}}{R} = 19,000$ FWHM = 2.39 pix 335 lines

Conclusions:

- Data sampling is almost perfect (~2.5 pix)
- Switch from the slit 0.3 \times 0.3 mm to 0.17 \times 0.17 mm requires re-focusing of CCD

Performance Initial data

Observations of the flux calibrated objects:

- 1. 16/17 December 2019, HD 92558, A2, V = 8.06 mag, $z = 3-19^{\circ}$, seeing $\approx 2.3''$, in total, 7 spectra, Moon close to the last quarter (75%) in 12° from the target
- 2. 17/18 December 2019, HD 218045, B9III, V = 2.48 mag, z = 40°, seeing = 1.5", 4 spectra, no Moon
- 3. 10/11 January 2020, HD 92558, A2, V = 8.06 mag, z = 15-19°, 3 spectra, no Moon
- 4. 10/11 November 2020, HD 215012, A0, V = 7.47, z = 15-19°, seeing $\approx 2''$, 4 spectra (one pair for one slit), no Moon. Bad example: eclipsing binary with $\Delta m = 0.22$ mag

Fluxes from Alekseeva et al. (1997), ADS: 1997BaltA...6..481A; Biryukov et al. (1998), 1998A&AT...16...83B

Parameters of extraction: aperture = 1.1FWHM, PSFEX, no correction for the scattered light

Performance Total throughput

Atmosphere + telescope + fibre + spectrograph + CCD:

- Peak η is about 2.6%
 @5350 Å
- after 4290 Å η drops to 0.025%
- Changing the slit from 0.3×0.3 to 0.3×0.17 mm leads to the loss of 0.15 mag

Performance Analysis

Possible sources of losses:

- seeing (AO, tip-tilt system)
- guiding errors (local guider, guiding with the injection unit)
- telescope focus (guiding mirror to be replaced)
- new fibre

Expected efficiency:

Atmosphere -0.8 (?) Seeing -0.6 (?) Fibre unit -0.5 (?) Telescope -0.47 (?) Spectrograph -0.3**Total:** 0.033

Exposure calculator

Python version

Initial data:

- measured throughput of MRES
- (very) rough model of sky brightness
- scaled to V = 0^m flux density distribution for 24 stars with known sp. type (errors from 5 to 20%)

Modes:

- known T_{exp} , estimate SNR@ λ
- known SNR@λ, find Texp
- display result for the whole range 4000-7000 Å

usage: mres_expose	.py [-h] [sptype SPTYPE] [moon MOON] [mag MAG] [wave WAVE] [snr SNR] [texp TEXP] [showall]
optional arguments	:
_h,help	show this help message and exit
sptype SPTYPE	Spectral type among available [O5, O9, B0, B2, B5, B8, A0, A2, A5, A8, F0, F2, F5, F8, G0, G2, G5, G8, K0, K2, K5, M0, M2, M5]
moon MOON	Lunar phase in days from new Moon. Available values are ['new', 'quarter', 'full']
mag MAG	Magnitude in V band
––wave WAVE	Reference wavelength in Agstroems
snr SNR	Compute time, required for specified SNR
texp TEXP	Compute SNR from specified time
showall	Plot the diagram for the full range of wavelengths

Example of usage:

./mres_expose.py --sptype A5 --moon new --mag 11.5 --texp 3000 --showall --wave 6000

Expected SNR(6000) = 53 in 3000 s

Exposure calculator Python version

Initial data:

- measured throughput of MRES
- (very) rough model of sky brightness
- scaled to V = 0^m flux density distribution for 24 stars with known sp. type (errors from 5 to 20%)

Modes:

- known T_{exp} , estimate SNR@ λ
- known SNR@λ, find Texp
- display result for the whole range 4000-7000 Å

Example of usage:

./mres_expose.py --sptype A5 --moon new --mag 11.5 --texp 3000 -showall --wave 6000

Expected SNR(6000) = 53 in 3000 s

Warning: Calibrations exist only for the central wavelength of orders

Final remarks

Summary and recommendation for the users

- ✓ Optimal parameters of extraction when is possible to neglect the effect of overlapped orders: region [x0:xn, y0, yn] = [660, 1580, 1, 393] and aperture width = 1.1FWHM. In this case the frame contains 37 orders within wavelengths 4054 - 7068 Å
- ✓ Spectrograph provides *R* from 16,000 (slit 0.3 × 0.3 mm) to 19,000 (slit 0.3 × 0.17 mm) while corresponding FWHM varies from 2.85 to 2.49 pix
- \checkmark The full efficiency of the system in visible light reaches 2.5-3% and increases in IR
- \checkmark Switch from the slit 0.3 × 0.3 mm to 0.3 × 0.17 mm leads to the loss of approx. 0.15 mag
- \checkmark Scattered light cannot be removed completely with current setup
- Possible ways to improved spectrograph:
- -guiding (local guider, carriage, etc.
- control of the telescope focus (guiding 'mirror' must be replaced to the real mirror)
- -new fibre
- -switch to usage of different cross-dispersing element (prisms, grating, grism better)

Thanks for your attention

Eugene Semenko E-mail: <u>esemenko@gmail.com</u> FB: <u>fb.com/eugene.semenko</u>