Computational Fluid Dynamics:

A first approach to Aerodynamics

Mauricio Suárez Universidad Nacional de Colombia

GCRF Big Data and Digital Technology Workshop September 20th 2019 Chiang Mai - Thailand

Observatorio Astronómico Nacional

Steps

- Understanding physical problem:
 - Governing Equations and Boundary Conditions
- Gridding Strategy
- Numerical Methods and optimizing
 - Efficiency of the solution
- Visualization
- Validation
 - Experiments or analytical solution

Problem Specification - Type of flow

- Time independent
- Incompressible
- Viscous
- 2-Dimensional

$$R = \frac{V_0 h}{\nu} = 1,2$$

Computational Fluid Dynamics: A first approach to Aerodynamics

Problem Specification - Governing equations

Conservation Equations

$$\frac{\partial}{\partial t}\rho + \nabla \cdot (\rho \mathbf{V}) = 0$$
$$\left[\frac{\partial}{\partial t}\mathbf{V} + (\mathbf{V} \cdot \nabla)\mathbf{V}\right] = -\nabla P + \mu \nabla^2 \mathbf{V}$$

$$\boldsymbol{V} = (u, v)$$

Computational Fluid Dynamics: A first approach to Aerodynamics

Problem Specification - Governing equations

Complications

5

$$P = P\left(\rho, T\left(\boldsymbol{x}, t\right)\right)$$

Simplified Equations

$$\nabla \cdot \boldsymbol{V} = 0$$

$$\rho \left(\boldsymbol{V} \cdot \nabla \right) \boldsymbol{V} = -\nabla P + \mu \nabla^2 \boldsymbol{V}$$

Computational Fluid Dynamics: A first approach to Aerodynamics

Problem Specification - Governing equations

Stream - Vorticity formulation

$$(\mathbf{V}, P, \rho) \rightarrow (\psi(x, y), \zeta(x, y))$$

$$u = \frac{\partial}{\partial y}\psi; \ v = -\frac{\partial}{\partial x}\psi$$

6

- Decoupling of pressure
- The velocity field is the rotational of other field!

Problem Specification - Governing equations

Stream - Vorticity formulation

Equations to be solved...What did we win?

$$abla^2\psi=\zeta$$

$$\nabla^2 \zeta = \frac{1}{\nu} \left(\frac{\partial \psi}{\partial y} \frac{\partial \zeta}{\partial x} - \frac{\partial \zeta}{\partial y} \frac{\partial \psi}{\partial x} \right)$$

Computational Fluid Dynamics: A first approach to Aerodynamics

Problem Specification - Boundary Conditions

$$\frac{\partial \psi}{\partial y} = V_0 \qquad \zeta = 0$$

Computational Fluid Dynamics: A first approach to Aerodynamics

8

Gridding: Structured grid in rectangular coordinates

g

Gridding: is it the appropriate size to h?

10 Computational Fluid Dynamics: A first approach to Aerodynamics

Numerical Methods: Finite Differences

Visualization : Results of the digital experiment

Maps of stream R = 1

Visualization : Results of the digital experiment

Maps of stream R=2

Visualization : Results of the digital experiment

Maps of vorticity R = 1

Visualization : Results of the digital experiment

Maps of vorticity R = 2

Visualization : Results of the digital experiment

Maps of stream and vorticity

R = 2t = 10000

16 Computational Fluid Dynamics: A first approach to Aerodynamics

Visualization : Experiment

17 Computational Fluid Dynamics: A first approach to Aerodynamics

Application

Why the spoilers of the cars?

$$P = \frac{F}{A}$$

Drag forces $F \propto \rho v^2 A$

Computational Fluid Dynamics: A first approach to Aerodynamics

Conclusions

- Computational complex processes.
- No pointed corners are useful in Aerodynamics.
- Computational Fluid Dynamics is an important tool with many applications in Science and Industry.
- It is not about reinvent the wheel, it is about to understand the principles involved in the problem.
- Use specialized software. Do not understand it as a 'black box'.

