16-20 September 2019
Kantary Hills Hotel, Chiang Mai
Asia/Bangkok timezone

Interpretable models for predicting early mortality in patients coronary artery disease

17 Sep 2019, 10:00
Kantary Hills Hotel, Chiang Mai

Kantary Hills Hotel, Chiang Mai

44, 44/1-4 Nimmanhaemin Road, Soi 12, Suthep, Muang, Chiang Mai 50200, Thailand


Dr. Demetrio Fabián García Nocetti (UNAM)


This work refers to the construction of models using machine learning algorithms for early prediction (during the first 24 hours of admission) of hospital mortality in patients with coronary artery disease through the use of clinical notes and structured clinical data (electronic health record -EHR). The aim is to effectively identify suitable models to predict early mortality and recognize risk factors. For unstructured EHR, n-gram models to extract feature in the clinical notes are explored. For structured data, different machine learning algorithms are evaluated and combined with different kind of information to identify risk factors. We also validate the model performance and compare its performance using reference scores. It is important to mention, that this study is focused on the analysis of the first 24 hours of admission, because during this time it is possible to identify invasive procedures or not, avoiding irreversible damage or sudden death.

Primary author

Presentation Materials

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now