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Why density estimation?

The goal of density estimation is to estimate the unknown probability density 
function of a random variable from a set of observations. In more familiar 
language, density estimation smoothes collections of individual 
measurements into a continuous distribution, replacing points on a line or 
plane by a smooth estimator curve or surface. 

When the parametric form of the distribution is known (e.g., from 
astrophysical theory) or assumed (e.g., a heuristic power law model), then 
the estimation of model parameters is the subject of regression (MSMA 
Chpt. 7). Here we make no assumption of the parametric form and are 
thus involved in nonparametric density estimation.



Astronomical applications

• Galaxies in a rich cluster à underlying distribution of baryons

• Lensing of background galaxies à underlying distribution of Dark Matter

• Photons in a Chandra X-ray image à underlying X-ray sky

• Cluster stars in a Hertzsprung-Russell diagram à stellar evolution isochrone

• X-ray light curve of a gamma ray burst afterglow à temporal behavior of a 
relativistic afterglow

• Galaxy halo star streams à cannibalism of satellite dwarf galaxy
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Histograms: A first step in density estimation



Problems with the histogram
• Discontinuities between bins are not present in the underlying population
• No mathematical guidance for choosing origin, x0
• No mathematical guidance for binning (grouping) method: equal spacing, 

equal # points, etc.
• No mathematical guidance for choosing the `center’ of a bin
• Difficult to visualize multivariate histograms

`In terms of various mathematical descriptions of accuracy, the histogram can 
be quite substantially improved upon'.  (Silverman 1986)

`The examination of both undersmoothed and oversmoothed histograms 
should be routine.’  (Scott 1992)

Histograms are useful for exploratory visualization of univariate data,
but are not recommended for statistical analysis.  

Fit models to  the original data points and (cumulative) e.d.f.’s,
not the (differential) histogram, unless the data are intrinsically grouped 

into ordered categories  



Kernel density estimation 

The most common nonparametric density estimation technique convolves 
discrete data with a normalized kernel function to obtain a continuous 
estimator:

Mathematics: A kernel must integrate to unity over –∞ < x < ∞, and must be 
symmetric,     K(u) = K(-u) for all u.  If K(u) is a kernel, then a scaled K*(u) = 
lK(lu) is also    a kernel. 

A normal (Gaussian) kernel a good choice, although theorems show that the 
minimum variance is given by the  Epanechnikov kernel (inverted parabola).  
The uniform kernel (`boxcar’, `Heaviside function’) give substantially higher 
variance.  See http://en.wikipedia.org/wiki/Kernel_density_estimation



A narrow bandwidth follows the data closely (small bias) but 
has high noise (large variance).  A wide bandwidth misses 
detailed structure (high bias) but has low noise (small variance).   

Statisticians often choose to minimize the L2 risk function, the 
mean integrated square error (MISE), 

MISE = Bias2 + Variance
~  c1h4 +   c2h-1  

(The constant c1 depends on the integral of the second derivative of the true p.d.f. 
and is therefore unknown in most situations.)

The choice of bandwidth is tricky!



KDE: Choice of bandwidth
The choice of bandwidth h is more important than the choice of kernel function.  
Silverman’s `rule of thumb’ that minimizes the MISE for simple distributions is                                          

where A is the minimum of the standard  deviation s and the interquartile range 
IQR/1.34, and p is the number of dimensions

More generally, statisticians choose kernel bandwidths using cross-validation.  
Important theorems written in the 1980s show that maximum likelihood 
bandwidths can be estimated from resamples of the dataset.  One method is 
leave-on-out samples with (n-1) points, and the likelihood is       

Variants include the `least squares cross-validation’ estimator, and the 
`generalized cross-validation’ (GCV)  related to the Akaike & Bayesian 
Information Criteria.    



h=0.05  too small

N(0,1)  true density

h=0.337   good: min MISE

h=2.0  too big

data points (rug plot)

Example of normal kernel smoothing



Rarely recognized by astronomers … 

Confidence bands around the kernel density estimator can be obtained:

• For large samples and simple p.d.f. behaviors, confidence intervals for 
normal KDEs can be obtained from asymptotic normality (i.e. the     
Central Limit Theorem)

• For small or large samples and nearly-any p.d.f. behaviors, confidence 
intervals for any KDE can be estimated from bootstrap resamples. 



Kernel regression

A regression approach to smoothing bivariate or multivariate data …

E(Y | x) = f(x)

Read “the expected population value of the response variable Y given a 
chosen value of x is a specified function of x”.   A reasonable estimation 
approach with a limited data set is to find the mean value of Y in a window 
around x, [x-h]/, x+h/2) with h chosen to balance bias and variance.   

A more effective way might include more distant values of x downweighted
by some kernel p.d.f. function such as N(0,h2).  This called kernel 
regression, a type of local regression.  The `best fit’ might be obtained by 
locally weighted least squares or maximum likelihood.    



Two common nonparametric regressions

Nadaraya-Watson estimator



Local polynomial smoother  (LOESS, kriging ~ Gaussian Process regression)



Spline regression

A spline is a piecewise interpolating function that passes through a series 
of pre-specified knots in a low-dimensional space in a manner that 
minimizes the curvature under the constraint of continuous first and 
second derivatives. The function is typically chosen to be a (cubic) 
polynomial.  

Algorithms for spline estimation were developed during the 1960-70s 
C. de Boor, On calculating with B-splines, J. Approx. Theory 6 (1972), 50–62 

Many variants have been developed:  Bezier curves, natural splines, B-
splines (basis), NURBS (non-uniform rational B-spline), M-splines (non-
negative), I-spline (monotone), T-splines (terminated NURBS), box splines 
(multivariate B-splines), spline wavelet (wavelet transform based on B-
splines), etc. 



The challenge of spline knot selection

5 knots chosen by R misses peak

15 knots chosen by R has
too many wiggles in smooth
areas

7 knots chosen by user
does a good job but is
subjective

Kass 2008

Modern techniques prune knot selection based on likelihood measures



Large literature on local regression techniques

Extensive software is available in the R/CRAN environment

Some books on local regression:

K. Takezawa, Introduction to Nonparametric Regression (2005)
W. Klemela, Multivariate Nonparametric Regression and Visualization with 

R and Applications to Finance (2014)
C. Loader, Local Regression and Likelihood (1999)
J.-P. Chiles & P. Delfiner, Geostatistics: Modeling Spatial Uncertainty (2012)
D. Ruppert, M. Wand & R. Carroll,  Semiparametric Regression (2003, 2nd ed in press)



Comment for astronomers

Due to unfamiliarity with kernel density estimation and nonparametric 
regressions, astronomers too often fit data with heuristic simple functions: 
linear, linear with threshold, power law, broken (segmented) power law, ….  
Unless scientific reasons are present for such functions, it is often wiser `to 
let the data speak for themselves’ (R. A. Fisher), estimating a smooth 
distribution from data points nonparametrically.   A variety of often-
effective techniques are available for this.

Well-established methods like KDE and the NW estimator have asymptotic 
confidence bands.  For many methods, confidence bands can be estimated 
by bootstrap methods within the `window’  determined by the 
(local/global) bandwidth.  Astronomers thus do not have to sacrifice `error 
analysis’ using nonparametric regression techniques.  


