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Outline

1. The problem: Stellar variability impedes planet detection

2. A solution: Parametric stochastic autoregressive models to 
reduce variability.  

3. ARIMA and the ARPS methodology 

4. ARPS applications to ~200,000 Kepler stars



Transiting planet observatories:
Space-based          and            ground-based

also CoRot, TESS, Plato

HATNet
Hungarian
Automated
Telescope
Network

Telescopes in
Chile, Namibia,
Australia

~100 confirmed
planets

~2300 confirmed 
planets

also WASP, OGLE, TrES, XO, Qatar, KELT, AST311



Stellar variability
A major problem for planet detection

The discovery of planets in astronomical radial velocity or photometric
time series (`light curves’) involves:

• Time domain suppression of variations intrinsic to the star

• Frequency domain periodogram to reveal periodic signature of
planetary orbit

“[E]xoplanets may still be detected by exploiting differences in
timescale, shape and wavelength dependence between the planetary
and stellar signals. ... [Stellar] variability, combined with residual
instrumental systematics, is still limiting the detection of habitable
planets by Kepler.”  (Suzanne Aigrain IAU 2015)



Haywood et al. 2014

GP local regression fit

For space-based observatories with ~0.01 mmag photometric precision,
the variations are mostly from stellar magnetic activity 

Magnetic activity is well-studied on our Sun and strongly magnetically active stars.  
But until the Kepler mission, it was not recognized how stellar magnetic activity is 
so pervasive in normal stars. 



Sometimes it is easy to find the recurring transits …. 

… but other times it is hard but important

Two Earth-sized planets 
orbiting Kepler-20

Fressin et al. 2012    Nature 



Ground-based light curves are mostly 
dominated by atmospheric & instrumental variations

HAT-S raw 
lightcurve

After 
instrumental 
effects are 
reduced

After 
atmospheric 
effects are 
reduced (TFA)



Complex observing cadences for HAT-S survey

Cadences for other ground-based surveys are typically sparser 
and more irregular …  more difficult to find periodicities.



Stellar variability reduction methods
Nonparametric modeling

§ Wavelet analysis (Jenkins 2002 & Kepler pipeline, Carter & Winn 2009)

§ Gaussian Processes regression  (Gibson 2014, Aigrain et al 2016, Luger et al 2016)

§ Advanced signal processing methods: Independent Component Analysis, 
correntropy, trend entropy, Empirical Mode Decomposition, Singular 
Spectrum Analysis, …  (Waldmann et al 2013, Huijse et al 2012, Roberts et al 2013, 

Greco et al 2016, Boufleur et al 2018, …)

Parametric modeling

Rarely used because stellar & atmospheric variations do not follow any     

obvious function: Flux ~ f(time).  However, textbooks in time series analysis    

are dominated by stochastic autoregressive regression models,                                 

Flux ~ f(past fluxes, past changes).   These are broad model families widely   

used in engineering signal processing, econometrics, and other fields     

(millions of Google hits).  

We have found these models are also very effective 
for time domain astronomy!!Eric Feigelson  2018 17



Autoregressive modeling for
evenly spaced time series

ARIMA(p,d,q) includes d differencing operations
x’t = xt – xt-1

ARFIMA(p,d,q) has fractional differencing

CARMA (continuous), VARIMA (vector), SARIMA (periodic), GARCH and 
dozens of other extensions to the ARMA family 

Current value
of stellar flux

Recent past
flux value

Coefficient of 
linear regression

Current 
Gassian noise
value

Recent past
noise value



• AR & MA components model short-memory processes

• I differencing operator removes many forms of trend
and non-stationarity

• F component models long-memory processes and is
equivalent to the astronomers’ 1/fa-type red noise.  
The coefficient d is arithmetically related to a and the
economists’ Hurst parameter. 

Roughly speaking …

The ARIMA and ARFIMA models can remove 
an enormous variety of  temporal variations 

seen in astronomical data 



Methodological procedures

1. ARIMA-type models are fit by maximum likelihood estimation (MLE) 
giving a unique solution for a chosen order (p,d,q) 

2. Order selection (model complexity) performed using the penalized 
likelihood measure, Akaike Information Criterion

3. Residual analysis to evaluate model adequacy:  Is the best-fit model a 
good fit? Are the residuals consistent with Gaussian white noise? Tools: 
Autocorrelation function, Ljung-Box test, augmented Dickey-Fuller test, 
Anderson-Darling test, etc

These MLE methods have no free parameters
e.g. choice of smoothing bandwidth or kernel



ARPS: Four steps to exoplanet transit detection

1. Pre-process the data
2.  Reduce/remove uninteresting stellar variability but …

“Don’t eat the planet!“        David Jones, SAMSI
3.  Conduct periodicity search for recurring transits
4.  Establish decision criteria to report Planet Candidates

Ingest' AR'fit'Preprocess' TCF'periodogram'
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Problem:

The differencing 
operator transforms 
box-shaped transit 
signal into a periodic 
double-spike signal
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To find the planetary signal in the ARIMA/ARFIMA
residuals, we convolve the residual time series with a
matched filter for a periodic double-spike pattern we call
the Transit Comb Filter (G. Caceres).  Planetary signals
should appear as peaks in a periodogram based on the TCF.  

Caceres, Feigelson et al. 2019a



Comparison of TCF and BLS periodograms
KIC 010024701

Here neither method detects 
periodicity in the original lightcurve

BLS detect periodicity in ARIMA
residuals but with lower SNR than TCF

Eric Feigelson  2018 23

BLS

TCF
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Sample Lightcurve with Fit & Residuals
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Typical 4 yr Kepler
lightcurve

Maximum likelihood
ARFIMA model

Residuals

KARPS: Kepler AutoRegressive Planet Search

Caceres, Feigelson, et al. 2019b

The ARPS procedure is applied to ~200,000 Kepler stars



A

ARFIMA 
residuals

Transit Comb
Filter
periodogram

Folded light
curve
at best
TCF period
(double-spike)

Eric Feigelson  2018 25



Observed 4 year 
light curve

After differencing

ARFIMA model

ARFIMA residuals

Noise reduced 
from IQR=44 to 10 Eric Feigelson  2018 26

Example #1



Partial autocorrelation function

Original 
lightcurve

After 
differencing

ARFIMA
residuals



Example #1 TCF periodogram …..   No periodicity seen !!

(This is the case for >95% of Kepler stars)



No apparent 
variability in light 
curve

No improvement 
in noise with 
ARIMA models 
but …

Eric Feigelson  2018 29

Example #2



… autocorrelation 
is present  and is … 

… removed with 
ARFIMA model



TCF periodogram show periodicity with harmonics
P=1.38 days with peak SNR = 30

Folded lightcurve shows double-spike shape … 
a new candidate planet !!



Results from full Kepler study

Improvements in lightcurve noise from ARIMA modeling

Caceres, Feigelson et al. 2019b



Improvements in lightcurve autocorrelation
from ARIMA modeling



Examples of TCF periodograms

No peaks –
very common

Strong 
periodic 
variable

New transit?

Red giant?

TCF corrupted
by outliers



Comparison of KARPS TCF SNR and KOI ModelSNR

Offset suggests KARPS TCF is
more sensitive than KOI modeling

Caceres, Feigelson et al. 2019b



Random Forest classification and 
ROC curves for candidate planet selection 

– The exoplanetary community places high level of trust in the Kepler 
Mission ‘Confirmed Candidate’ classification based on astronomical 
followup studies.  These can be used as a training set for classification 
based on KARPS analysis.  

– Statisticians have extensively methodology to find classification 
criteria based on desired performance of True Positive & False Positive 
classifications.  We use Random Forest decision trees with ~20 input 
features from lightcurves and TCF periodograms, with decision 
thresholds based on receiver operating curves (ROC).  



Feature importance in Random Forest classifier



ROC curves for 1 vs. 37 features



Recovery & discovery with 
Random Forest classifier

Random Forest Probability

N
0

50
0

10
00

15
00

20
00 Training KOI Candidates

Training CFPs
Other

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Random Forest Probability

N
0

50
0

10
00

15
00

20
00 KOI Candidates

KOI False Positives
Other

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Blue = confirmed planets     Red = confirmed False Positives   Gray = random stars

Discovery space



Result for discovery of new Kepler planets

Red = previously known KOI planets
Magenta = new KARPS planets
Gray = stars without planets

Caceres, Feigelson et al. 2019b



ARPS Conclusion

Low-dimensional stochastic ARIMA-type models can be very  
effective in removing autocorrelated noise in stellar lightcurves, 
leaving periodic transits in the residuals.

TCF gives an effective periodogram for ARIMA residuals.  

Random Forest is an effective classifier if strong training sets are 
available. False Positive rejection is tricky but feasible. 

Coding is easy: extensive econometric software in R. Computational 
burden is reasonable.  


