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Outline

The problem: Stellar variability impedes planet detection

A solution: Parametric stochastic autoregressive models to
reduce variability.

ARIMA and the ARPS methodology

ARPS applications to ~200,000 Kepler stars



Transiting planet observatories:
Space-based and ground-based

K gplé’r ~2300 confirmed

planets

HATNet

Hungarian
Automated
Telescope
Network

Telescopes in
Chile, Namibia,
Australia

~100 confirmed
planets

also CoRot, TESS, Plato
also WASP, OGLE, TrES, XO, Qatar, KELT, AST3



Stellar variability
A major problem for planet detection

The discovery of planets in astronomical radial velocity or photometric
time series ('light curves’) involves:

 Time domain suppression of variations intrinsic to the star

* Frequency domain periodogram to reveal periodic signature of
planetary orbit

«[E]lxoplanets may still be detected by exploiting differences in
timescale, shape and wavelength dependence between the planetary
and stellar signals. ... [Stellar] variability, combined with residual
instrumental systematics, is still limiting the detection of habitable
planets by Kepler.”» (Suzanne Aigrain IAU 2015)



For space-based observatories with ~0.01 mmag photometric precision,
the variations are mostly from stellar magnetic activity
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Magnetic activity is well-studied on our Sun and strongly magnetically active stars.
But until the Kepler mission, it was not recognized how stellar magnetic activity is
so pervasive in normal stars.



Sometimes it is easy to find the recurring transits ....
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HAT-S raw
lightcurve

After
instrumental
effects are
reduced

After
atmospheric

effects are
reduced (TFA)

Ground-based light curves are mostly

dominated by atmospheric & instrumental variations
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Complex observing cadences for HAT-S survey
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Cadences for other ground-based surveys are typically sparser
and more irregular ... more difficult to find periodicities.



Stellar variability reduction methods

Nonparametric modeling
=  Wavelet analysis (Jenkins 2002 & Kepler pipeline, Carter & Winn 2009)

= Gaussian Processes regression (Gibson 2014, Aigrain et al 2016, Luger et al 2016)

= Advanced signal processing methods: Independent Component Analysis,
correntropy, trend entropy, Empirical Mode Decomposition, Singular
Spectrum Analysis, ... (Waldmann et al 2013, Huijse et al 2012, Roberts et al 2013,
Greco et al 2016, Boufleur et al 2018, ...)

Parametric modeling

Rarely used because stellar & atmospheric variations do not follow any
obvious function: Flux ~ f(time). However, textbooks in time series analysis
are dominated by stochastic autoregressive regression models,

Flux ~ f(past fluxes, past changes). These are broad model families widely
used in engineering signal processing, econometrics, and other fields

(millions of Google hits).

We have found these models are also very effective
for time domain astronomy!!



Autoregressive modeling for
evenly spaced time series
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ARIMA(p,d,q) includes d differencing operations
X't = X¢ = Xgq

ARFIMA(p,d,q) has fractional differencing

CARMA (continuous), VARIMA (vector), SARIMA (periodic), GARCH and
dozens of other extensions to the ARMA family



Roughly speaking ...

AR & MA components model short-memory processes

[ differencing operator removes many forms of trend
and non-stationarity

* F component models long-memory processes and is
equivalent to the astronomers’ 1/f*-type red noise.
The coefficient d is arithmetically related to a and the
economists’ Hurst parameter.

The ARIMA and ARFIMA models can remove
an enormous variety of temporal variations
seen in astronomical data



Methodological procedures

1. ARIMA-type models are fit by maximum likelihood estimation (MLE)
giving a unique solution for a chosen order (p,d,q)

2. Order selection (model complexity) performed using the penalized
likelihood measure, Akaike Information Criterion

3. Residual analysis to evaluate model adequacy: Is the best-fit model a
good fit? Are the residuals consistent with Gaussian white noise? Tools:
Autocorrelation function, Ljung-Box test, augmented Dickey-Fuller test,
Anderson-Darling test, etc

These MLE methods have no free parameters
e.g. choice of smoothing bandwidth or kernel



ARPS: Four steps to exoplanet transit detection

1. Pre-process the data
2. Reduce/remove uninteresting stellar variability but ...

“Don’t eat the planet!” David Jones, SAMSI
3. Conduct periodicity search for recurring transits

4. Establish decision criteria to report Planet Candidates
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Problem:

The differencing
operator transforms
box-shaped transit
signal into a periodic
double-spike signal
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Schematic of ARMA-Model Effect on Transit Signal
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To find the planetary signal in the ARIMA/ARFIMA
residuals, we convolve the residual time series with a
matched filter for a periodic double-spike pattern we call
the Transit Comb Filter (G. Caceres). Planetary signals
should appear as peaks in a periodogram based on the TCF.

Caceres, Feigelson et al. 2019a



Comparison of TCF and BLS periodograms
KIC 010024701

periodicity in the original lightcurve rjuals but with lower SNR than TCF
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KARPS: Kepler AutoRegressive Planet Search

The ARPS procedure is applied to ~200,000 Kepler stars

Sample Lightcurve with Fit & Residuals
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ARIMA residuals IQR=8
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Example #1

Observed 4 year
light curve

After differencing
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Original
lightcurve

After
differencing

ARFIMA
residuals
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TCF transit depth ratio
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Example #1 TCF periodogram ..... No periodicity seen !!

(This is the case for >95% of Kepler stars)
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Example #2

No apparent
variability in light
curve

No improvement
in noise with
ARIMA models
but ...
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... autocorrelation
is present and is ...

... removed with
ARFIMA model
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Folded PDC Flux [elec/sec]

TCF power
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TCF periodogram show periodicity with harmonics
P=1.38 days with peak SNR = 30

ARIMA TCF periodogram
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Folded lightcurve shows double-spike shape ...

a new candidate planet !!
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loc(10R)

Results from full Kepler study

Improvements in lightcurve noise from ARIMA modeling

Stitched light curve
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Frequency
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Improvements in lightcurve autocorrelation
from ARIMA modeling
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TCF power
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Comparison of KARPS TCF SNR and KOl ModelSNR

ARIMA LOESS

log KARPS SNR

I | | |
10 100 1000 10000

log KOI SNR

Offset suggests KARPS TCF is
more sensitive than KOl modeling

Caceres, Feigelson et al. 2019b



Random Forest classification and
ROC curves for candidate planet selection

— The exoplanetary community places high level of trust in the Kepler
Mission ‘Confirmed Candidate’ classification based on astronomical
followup studies. These can be used as a training set for classification
based on KARPS analysis.

— Statisticians have extensively methodology to find classification
criteria based on desired performance of True Positive & False Positive
classifications. We use Random Forest decision trees with ~20 input
features from lightcurves and TCF periodograms, with decision
thresholds based on receiver operating curves (ROC).



Feature importance in Random Forest classifier

Random Forest Feature Importance
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True Positive Rate
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Recovery & discovery with
Random Forest classifier
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Result for discovery of new Kepler planets

Red = previously known KOI planets
Magenta = new KARPS planets
Gray = stars without planets

7 Y, - .‘:-."'...\‘. X

a "::_ .‘L‘,: ';. \" ‘. A ‘.‘ . s
- IR h Ry

PRI oConl S i
g TR :—
) f :. '..“A 'i _.:‘: i : .:j
B ._ Wit i 08 -‘H 0-—‘:*} s et :‘ o . 5 3 Uhec ,‘T-f_rfl_i‘ -------- e - 7Yk i
. . ., ! v i w .

- I 1 1 1 1} ] I
0.2 05 1.0 20 5.0 10.0 200 50.0 100.0
log TCF Period (day)

I 1 1 1 1] T ]
0.2 0.5 1.0 20 2.0 10.0 200 20.0 100.0
log TCF Period (day)

Caceres, Feigelson et al. 2019b



ARPS Conclusion

Low-dimensional stochastic ARIMA-type models can be very
effective in removing autocorrelated noise in stellar lightcurves,
leaving periodic transits in the residuals.

TCF gives an effective periodogram for ARIMA residuals.

Random Forest is an effective classifier if strong training sets are
available. False Positive rejection is tricky but feasible.

Coding is easy: extensive econometric software in R. Computational
burden is reasonable.



