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The underlying situation

Astronomers are well-trained in the mathematics underlying 
physics, but not in applied fields associated with statistical 
methodology.  

Consequently, many astronomers use a narrow suite of familiar 
statistical methods that are often non-optimal, and sometimes 
incorrectly applied, for a wide range of data and science analysis 
challenges. 

This talk highlights some common problems in recent astronomical 
studies, and encourages use of improved methodology.



Recommended steps in the
statistical analysis of scientific data

The application of statistics can reliably quantify information 
embedded in scientific data and help adjudicate the relevance 
of theoretical models.  But this is not a straightforward, 
mechanical enterprise. It requires: 

Ø exploration of the data
Ø careful statement of the scientific problem
Ø model formulation in mathematical form
Ø choice of statistical method(s)
Ø calculation of statistical quantities             
Ø judicious scientific evaluation of the results   

Astronomers often do not adequately pursue each step  



Cosmology               Statistics              

Galaxy clustering Spatial point processes, clustering
Galaxy morphology Regression, mixture models
Galaxy luminosity fn Gamma distribution
Power law relationships Pareto distribution 
Weak lensing morphology Geostatistics, density estimation 
Strong lensing morphology Shape statistics
Strong lensing timing Time series with lag
Faint source detection False Discovery Rate
Multiepoch survey lightcurves Multivariate classification
CMB spatial analysis Markov fields, ICA, etc
LCDM parameters Bayesian inference & model selection
Comparing data & simulation under development

An astrostatistics lexicon …



Misuse of the Kolmogorov-Smirnov test
The KS test is used in ~500 astronomical papers/yr, but often incorrectly or 
with less efficiency than an alternative test.  Three problems are identified:

1. The KS statistic efficiently detects differences in global shapes, but not 
small scale effects or differences near the tails.  The Anderson-Darling statistic   
(tail-weighted Cramer-von Mises statistic) is more sensitive. 
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Kolmogorov-Smirnov test (continued)

2. The 1-sample KS test (data vs. model comparison) is distribution-
free only when the model is not derived from the dataset.  In this case, 
probabilities must be calculated for each problem using bootstrap 
resampling. 

3. The KS test is distribution-free only in 1-dimension.  Multi-
dimensional KS tests are based on arbitrary ordering; probabilities can 
be obtained from bootstrap resampling.

See the viral page 
Beware the Kolmogorov-Smirnov test! 

at http://asaip.psu.edu



Overuse of binned statistics
• Histograms are good for visualization, poor for inference

– Arbitrary bin width, binning algorithm, zero point
– Loss of information within bin 
– √N errors not accurate for sparse counts

Kernel density estimation (e.g. Gaussian convolution) and  non-parametric 
local regressions with confidence bands are recommended for density 
estimation (smoothing)

• Binned estimators can be replaced by unbiased, unbinned maximum 
likelihood estimators.  Chi-square tests & regressions based on arbitrarily 
binned data give unreliable probabilities because the degrees of freedom 
are not known. 

• Inference from histograms are particularly inaccurate for asymmetrical distributions; 
e.g. slope estimates of power law (Pareto) distributions (use MLE instead)

• Poor use of 2-sample comparisons when continuous data is arbitrarily split into 
subsamples for continuous data (use nonparametric correlation measures)



Local regressions
Statisticians have recently developed local regression models that give 
heteroscedastic confidence intervals from spline-type regressions, often 
using bootstrap resampling in windows.  In 2-3 dimensions, geostatistics
have developed kriging regression models that give maps and variograms
from (un)evenly sampled data points.  Kriging is synonymous with 
Gaussian Processes regression.  

Nadaraya-Watson local regression 
estimator with bootstrap confidence 
intervals for a small sample of Sloan 
quasars



Large literature on local regression techniques

Extensive software is available in the R/CRAN environment 

Astronomers can `let the data speak for themselves’ 
rather than assuming heuristic parametric regression models

Some books on local regression:

W. Klemela, Multivariate Nonparametric Regression and Visualization with 
R and Applications to Finance (2014)

C. Loader, Local Regression and Likelihood (2013)
J.-P. Chiles & P. Delfiner, Geostatistics: Modeling Spatial Uncertainty (2012)
D. Ruppert, M. Wand & R. Carroll,  Semiparametric Regression (2003)
K. Takezawa, Introduction to Nonparametric Regression (2005)



Problems with Regression I
Improper use of minimum c2 fitting

A c2-like statistic for binned data, defined as the sum of squared residuals divided 
by the square of heteroscedastic measurement errors, is often minimized to obtain 
a best fit model.  Problems with this method include:

• The statistic may not be c2-distributed or the degrees of freedom may be ill-
determined.  The theorems underlying the c2 test apply only to restricted 
situations; e.g. the bins must be established before the data are acquired 
begins (multinomial experiment), not chosen later.       

Alternatives to minimum c2 fitting include: unweighted least squares regression; 
unbinned maximum likelihood estimation; and Bayesian inference.  See B.C. Kelly 
(ApJ 2007) for a flexible likelihood framework with heteroscedastic measurement 
errors as a component of the variance.

• Parameter estimation and parameter confidence 
intervals may be biased (even completely incorrect) 
if the model is misspecified (minimum  c2>1.0 or 
<1.0).  This occurs when the measurement errors
are incorrectly specified, or are not fully responsible 
for the variance of the response variable.



Problems with Regression II
Inadequate residual analysis

Detailed study of residuals between data and a best-fit model gives critical 

insight into the quality of the fit:

• How much of the original variance is reduced by the model?  Examine the 

adjusted R2 or Mallows Cp.    

• Are the residuals autocorrelated indicating that structure is present outside 

of the model?  Try the autocorrelation function & Durbin-Watson statistic 

that have known distributions for Gaussian white noise.

• Are the residuals normally distributed?  If not consider quantile regression 
to study behavior in more detail. 

• Are outliers present?  Use standardized residuals and Cook’s distance to 

quantify the effects of individual points on the model.  Use robust 
regression techniques to reduce effects of outliers, if necessary.  



Problems with Regression III
Inadequate model selection & goodness-of-fit

Consider carefully whether the model addresses the scientific question and 
adequately fits the data.

• Is there a scientific basis for choosing the response variable?  If not, try 
symmetric regression models.

• Use the Anderson-Darling test to evaluate goodness-of-fit. Validate the 
model and parameter confidence intervals using cross-validation and 
bootstrap techniques.

• Consider elaborating or simplifying the model with more or fewer 
parameters.  Use penalized measures (adjusted R2, Akaike Information 
Criterion, Bayesian Information Criterion) for model selection.  



Problems with Regression IV
Other issues

• Regression results change when arbitrary variable transformations (e.g. log) 
are made.  Nonparametric tests should precede regression analysis.

• Astronomers tend to view intrinsically multivariate regression problems    as 
a sequence of bivariate problems.  This is unnecessary and restrictive: most 
regression methods are intrinsically multivariate.  

• Regressions for variables that are not independent (e.g., B-V vs. V-I 
diagrams) should be performed with great caution.

• Problems with Poisson-distributed response variables should use Poisson 
regression.

• Problems with binary (Yes/No) response variables should use contingency 
tables and logistic regression.



Overuse of Bayesian inference

When the model is used, the result is usually identically to maximum likelihood 
estimation (MLE) that has dominated statistical model fitting since Fisher (1922).  

When relevant scientific prior information is available, Bayesian inference 
is recommended.  It is a scientific, not a statistical, decision whether to 
weight the data’s likelihood with prior information.   

Rapid rise in Bayesian analyses since ~2003 in both 
the astronomical & statistical communities. But 
some applications might be reconsidered:

When uninformative flat priors and Bayesian  
model averaging is used, the mean of the 
likelihood function averaged over (often 
arbitrarily) chosen parameter ranges.  
Scientifically uninteresting structure in the 
likelihood will affect the result.

Bayesian Journal Articles



Suggested standards for Bayesian presentations

• Give explicit equations for Bayes’ Theorem,  likelihood, and priors

• Discuss sensitivity of science results to different reasonable prior 
distributions, including unity (i.e. maximum likelihood estimation)

• Discuss accuracy and convergence of numerical algorithm (e.g. MCMC). 
Note that in simple cases (unimodal posterior in low dimensions), more 
efficient optimization algorithms can be used (e.g. EM Algorithm).



Wrong names for established statistical 

distributions

• `Schechter function’ (1976) of galaxy luminosities is Euler’s gamma 

distribution (c1785)  

• `Power law’ relationship is the Pareto distribution

Problems:

o astronomers do not learn extensive mathematical development, 

including many extensions to the distributions (e.g. B.Arnold `Pareto 

Distributions’, 2

nd

ed, 2015)

o astronomers are unaware of links between statistical distributions 

and generative stochastic processes …perhaps help in understanding 

astrophysical causes?



Multivariate clustering I
Overuse of `friends-of-friends’ algorithm

The FoF (percolation) algorithm is the single 
linkage agglomerative clustering algorithm 
(Florek et al. 1951).  

Extensive tests show that single linkage tends 
to give spurious `chaining’ of clusters in many 
situations.  Average linkage or Ward’s criterion 
is recommended instead.          

FoF may be advised when elongated 
anisotropic clusters are sought (e.g. 
filamentary galaxy clustering) but should not 
be used for general problems of unsupervised 
multivariate clustering. 

Useful reference
Everitt et al. Cluster Analysis, 
5th ed. Wiley, 2011

Turner & Gott 1976



Multivariate clustering II
Arbitrary choice of cluster boundaries

Boundaries between classes are often 
constructed by eye based on low-
dimensional projections.  These are 
decision trees when boundaries are 
parallel to variable axes. 

Formal methods for constructing 
unsupervised, deterministic decision 
trees were developed during the 1970-
2000s by Leo Breiman and others: 

Veilleux & Osterbrock 1987

• Classification and Regression Trees (CART) for tree construction & pruning
• Boosting & bootstrap aggregation (bagging) for tree improvement
• Random Forests for tree validation



Multivariate clustering II
Arbitrary choice of cluster boundaries

Astronomers often construct boundaries between classes by eye based on 
low-dimensional projections.   Decision trees with boundaries parallel to 
variable axes are an acceptable clustering technique, but should be 
performed using objective criteria for optimizing splits, pruning the tree, and 
testing tree validity with bootstrap resampling.  

This is the method of CART (Classification and Regression Trees) developed 
during the 1970-2000s by Leo Breiman and others, culminating in the 
Random Forest technique.  



Difficulties with frequency domain 
time series analylsis

• Use standard techniques of (multi)tapering and smoothing to improve 
periodogram signal-to-noise

• Beware stating simple false alarm probabilities for periodograms:  Fourier, 
Lomb-Scargle, Box Least Squares, etc.  Use simulations to validate peaks 
and alias structures.

• Beware interpreting peaks in periodograms as periodic behavior.  Often 
aperiodic autocorrelated behaviors produce spurious peaks in finite data 
sets.  Compare with ARMA-type time domain modeling.



Two final thoughts:  Practical
Avoid reinventing methodology

Astronomers repeatedly begin reinventing procedures that are
already well established with theorems, software, and experience.

• If the method reference is an astronomy or physics article, 
reference instead a statistics textbook or an important seminal 
paper.  Start with Wikipedia, Google,  R/CRAN, StackOverflow.  
For serious study (e.g. PhD dissertation), read topical statistics 
textbooks. 

• Read and learn the history and environment of the methods 
you want to use.  What is the past experience in other fields? 
What are the alternatives and how are they judged by expert 
statisticians? 



Two final thoughts:  Conceptual
Astronomy is not statistics!

Astronomical discovery and astrophysical understanding often relies 
on interpreting quantitative measurements of planets, stars, galaxies 
and the Universe.  In these cases, statistical analysis and evaluation 
can be very useful.  It is silly to ignore the sophistication of modern 
methodology; this can lead to unwarranted reports of scientific 
results, and to missed opportunities to infer valid results.

But astronomy and astrophysics also relies on non-quantitative 
argumentation, often based on insights into how the physical 
Universe operates.  Cause-and-effect sequences are difficult to 
discern statistically but can be crucial for clarifying alternative 
explanations.  Even in observational astronomy, weaving together 
strands of unconvincing evidence into scenarios has often led to 
insights later validated by further study.  



Conclusion

While a vanguard of astronomers use and develop advanced 
methodologies for specific applications, many studies are 
unnecessarily restricted to a narrow suite of familiar methods.

Astronomers need to become more informed and more involved in 
statistical methodology, for both data analysis and for science analysis.

Areas of common weakness of statistical analyses in astronomical 
studies can be identified (this talk).  Improvement is often not difficult.  
Highly capable free software, such as R/CRAN and Python, can be 
effective in bringing new methodology to advance our science. 



New resources to help astronomers
with statistical methodology

Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with 
Mathematica Support, Gregory, 2005

Practical Statistics for Astronomers, Wall & Jenkins, 2nd ed, 2012

Modern Statistical Methods for Astronomy with R Applications, Feigelson & Babu, 2012

Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide 
for the Analysis of Survey Data, Ivecic, Connolly, VanderPlas & Gray, 2014

Textbooks

Societies (join one or two!)
Intl Astrostatistics Assn affiliated with ISI  (2010)
AAS Working Group in Astroinformatics & Astrostatistics (2013)
ASA Interest Group in Astrostatistics (2014)
IAU Commission on Astroinformatics & Astrostatistics (2015)

Astrostatistics & Astroinformatics Portal (http://asaip.psu.edu)
Recent papers, lists of meetings & jobs, blogs & discussion forums, etc

http://asaip.psu.edu


Conclusion

While a vanguard of astronomers use and develop advanced 
methodologies for specific applications, many studies utilize a narrow 
suite of familiar methods.

Astronomers need to become more informed and more involved in 
statistical methodology, for both data analysis and for science analysis.

Areas of common weakness of statistical analyses in astronomical 
studies can be identified.  Improvement is often not difficult.  Highly 
capable free software, such as R/CRAN, can be effective in bringing 
new methodology to bear on astronomical problems. 


