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Regression vs. density estimation

Density estimation is nonparametric: no functional form for the shape of
the distribution, or relationship between the variables, is assumed. It is
usually applied to 1-3-dimensional problems.

Regression differs in two respects:

* |t addresses problems where one seeks to understand the
dependency of a pre-specified response variable Y on one (or
more) independent variables X (or X).

The science question should determine the response variable

* It addresses problems of modeling where the functional form of
the relationship between the variables is pre-specified. The
function has parameters, and the goal of the regression is to find
the "best’ parameter values that fit’ the data.

Astronomers perform regressions with heuristic functions
(e.g. power laws) and with functions from astrophysical theory



Classical regression model:
E[Y|X] = f(X,6) +e

“The expectation (mean) of the dependent (response) variable Y for a
given value of the independent variable X (or vector of variables X) is
equal to a specified function f, which depends on both X and a vector of
parameters 0, plus a random error (scatter).”

The “error’ € is commonly assumed to be a normal (Gaussian) i.i.d. random
variable with zero mean, € = N(0,52). Note that all of the randomness is in
this error term; the functional relationship is deterministic with a known
mathematical form.



Warning

Astronomers may be using classical regression too often, perhaps due to
its familiarity compared to other (e.g. nonparametric) statistical
methods.

e |f there is no basis for choosing a functional form (e.g. an
astrophysical theory), then nonparametric density estimation may
be more appropriate than regression using a heuristic function.

* If thereis no basis for choosing the dependency relationship
(i.e. that Y depends on X, rather than X on Y or both on some
hidden variables), then a form of regression that treats the variables
symmetrically should be used (e.g. OLS bisector, orthogonal
regression, Principal Component Analysis).



The error term ¢

There may be different causes of the scatter:

* |t could be intrinsic to the underlying population (‘equation error’).
This is called a “structural regression model’.

* |t may arise from an imperfect measurement process (‘measurement
error’) and the true Y exactly satisfy Y=f(X).

This is called a functional regression model’.

* Orbothintrinsic and measurement errors may be present.

Astronomers encounter all of these situations



Parameter estimation & model selection

Once a mathematical model is chosen, and a dataset is provided, then the
“best fit” parameters are estimated by one (or more) of the techniques
discussed in MSMA Chpt. 3:

* Method of moments

* Ordinary least squares (OLS, L,)

* Least absolute deviation (L,)

* Maximum likelihood estimation (MLE)

* Bayesian inference

Seek balance between model complexity and parsimony (Occam’s Razor):
* Does the ACDM model have a w-dot term?
* Are three or four planets orbiting the star?
* |s the star cluster an isothermal sphere or ellipsoid?

Choice of model form and complexity is called "‘model selection’.
Methods include: ¥2,, BIC, AlC, ...

The final model should be validated against the dataset (or other
datasets) using goodness-of-fit test (e.g. Anderson-Darling test
with bootstrap resamples for significance levels) and residual
analysis.



Important!
In statistical parlance, linear’ means linear in the
parameters (3., not ‘linear in the variable X',

Examples of linear regression functions:

Y = BO e BlX L 15t order polynomial
T BO L 551¢Y oL 5())(2 O high order polynomial

Y = Boe—x +e exponential decay

, Bo + 51 cos X1 5 sin Xile periodic sinusoid with fixed

phase



Examples of non-linear regression functions:

power law (Pareto)
isothermal sphere
sinusoid with arbitrary phase

segmented linear




Assumptions of ordinary least squares regression

The model is correctly specified (i.e. the population truly follows the
specified relationship)

The errors have (conditional) mean zero: E[e|X] =E[e] =0
The errors are homoscedastic, E[€??|X] = 62, and uncorrelated, E[g;g;] = O (i#])
For some purposes, assume the errors are normally distributed, €| X ~ N(0,5?)

For some purposes, assume the data are i.i.d., (x;,y;) are independent from
(x;,y;) but share the same distribution

For multivariate covariates X=(Xy, X,,..., X,), some additional assumptions:
— X; ... X, are linearly independent
— The matrix E[X,,X;’] is positive-definite

OLS gives the maximum likelihood estimator
for regression when ¢|X ~ N(0,c?)



A very common astronomical regression procedure

Dataset of the form: (X;.ox ;. Yi, 0v;)
(bivariate data with heteroscedastic measurement errors with known variances)

Linear (or other) regression model:  ¥; = Gy + 5: X; + ¢
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Best fit parameters from minimizing the function: Sruw = Z
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The distributions of the parameters are estimated from tables of the y?
distribution (e.g. Ay>=2.71 around best-fit parameter values for 90% confidence
interval for 1 degree of freedom; Numerical Recipes, Fig 15.6.4)

This procedure is often called ' minimum chi-square regression’ or "chi-
square fitting’ because a random variable that is the sum of squared
normal random variables follows a y? distribution. If all of the variance in
Y is attributable to the known measurement errors @y; and these errors
are normally distributed, then the model is valid.



However, from a statistical viewpoint ....

... this is a non-standard procedure! Pearson’s (1900) chi-square
statistic was developed for a very specific problem: hypothesis testing
for the multinomial experiment producing a contingency table of
counts in a pre-determined number k of categories.
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where O; are the observed counts, and M; are the model counts
dependent on the p model parameters 6. The weights (denominator)
are completely different than in the astronomers’ procedure.

A better approach uses a more complicated likelihood
that includes the measurement errors & model

error, and proceeds with MLE or Bayesian inference.
See important article by Brandon C. Kelly, ApJ 2007.



Concluding remarks

Regression is very widely used in astronomy, and often in a
reasonable fashion. It is crucial for understanding situations
where the data are explained by astrophysical models.

But poor practice does occur:

Overuse of heuristic models
lll-defined response variable
Improper used of ‘minimum chi-squared” method
Inadequate model selection
Inadequate residual analysis

Overuse of Bayesian inference with uninformative priors




