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Astronomical context
Astronomers have constructed classifications of celestial objects for centuries:

– Asteros (fixed stars) vs. planetos (roving stars)  [Greece, >2Kyr ago]

– Luminosae, Nebulosae, Occultae [Hodierna, mid-17th c]

– Comet orbits & morphology [Alexander 1850, Lardner 1853, Barnard 1891]

– Stellar spectra: 6 classes (Secchi 1860s), 7 classes (Pickering/Cannon 1900-
20s),     10 classes w/ brown dwarfs (Kirkpatrick 2005) 

– Galaxy morphology: 6+3 classes (Hubble 1926)

– Supernovae: Ia, Ib, Ic, Iib, IIP, Iin (Turatto 2003)

– Active galactic nuclei: Seyfert gal, radio gal, LINERs, quasars, QSOs, BL Lac, 
blazars

– Protostars/PMS stars: Class 0, 0/I, I, II, III (Lada 1992, Andre 1993)

In nearly every case, these classes were created by well-argued, 
but subjective assessment of source properties. 

In statistical parlance, the problem is called 
unsupervised clustering of heterogeneous multivariate data



(Poor) clustering methods in astronomy 

Deterministic decision trees
• Abell cluster richness class (Abell 1958)

• Young stellar objects with infrared colors 0.4<[5.8]-[8.0]<1.1 and 

0.0<[3.6]-[4.5]<0.8 are classified as Class II  (Allen 2004)

Percolation or `friends-of-friends’ algorithm
1. Plot data points in a 2-dimensional diagram

2. Find the closest pair, and call the merged object  a `cluster’

3. Repeat step 2 until some chosen threshold is reached.  Some 

objects will lie in rich clusters, others have one companion, and 

others are isolated



2. Percolation or `friends-of-friends’ algorithm

Turner & Gott
Groups of Galaxies I 
A Catalog  ApJS 1976

In statistics, this is 
`single linkage 

hierarchical clustering’ 



Statistical approach to clustering

In unsupervised clustering of a multivariate n x p dataset, the number, 
location, size and morphology of the data groupings is unknown.  
There is no `prior knowledge’ of classes.  

Nonparametric clustering algorithms: 
• Agglomerative hierarchical clustering ~ Friends-of-friends
• K-means partitioning
• Density-based clustering

Parametric clustering algorithms:
• Mixture models



Agglomerative hierarchical clustering
1. Construct the distance matrix d(xi,xj) for the dataset, assuming a distance metric 

(e.g. Euclidean with standardized variables). Call each point a `cluster’.
2. Merge two clusters with the smallest `distance’.  Several common choices for 

measuring the `distance’ between a cluster and a new data point:

o Minimum distance between any constituent point of the cluster and the new 
point = single linkage clustering.  This procedure is equivalent to `pruning’ the 
minimal spanning tree of the multivariate dataset.  This is the astronomers’ 
friends-of-friends or percolation algorithm.  This method is vulnerable to 
spurious `chaining’ of distinct clusters into elongated superclusters, and is 
therefore not recommended by statisticians. This is the astronomers’  
`friends-of-friends’ or percolation algorithm  

o Average distance between the constituent points of the cluster and the new 
point = average linkage clustering.  This often gives an intermediate outcome 
but is scale-dependent.   

o Maximum distance between any constituent point of the cluster and the new 
point = complete linkage clustering.  This is a conservative procedure that 
tends to give hyperspherical clusters. 

o Minimize the intra-cluster variances (tr W) = Ward’s (1963) minimum 
variance clustering



The result of an agglomerative (or divisive) clustering procedure is a dendrogram, 
or tree, showing the membership of each cluster at each stage of the clustering.  
There is no mathematical basis for choosing where to cut the tree, and thereby 
establishing the true number of clusters present. Qualitatively, objects combined 
at greater `heights’ in the dendrogram are more dissimilar.  

Comparison of 
hierarchical 
clustering methods

Primate scapular 
shapes
N=105,  p=7

A. J. Izenman
Modern Multivariate 
Statistical Techniques
(2008)



Nonparametric unsupervised clustering is a very uncertain enterprise, 
and different algorithms give different outcomes without 
mathematical guidance:  there is no likelihood to maximize or 
stopping criterion to choose number of clusters.  Results should be 
viewed with great caution for scientific inference.

Parametric unsupervised clustering lies on a stronger foundation:  there 
is a likelihood to maximize, and tools like BIC/AIC for model selection.  
But it assumes the cluster shapes in fact follow the chosen parametric 
form. 



Normal mixture models
These are parametric regression models where the multivariate dataset is 
assumed to consist of  k multivariate normal (MVN) clusters.  

Each cluster has a  hyperellipsoidal morphology extending over the entire space 
with mean vector µj and covariance matrix Sj where j=1, …, p.   

The model has 2kp+k+1 parameters: k means and k variances in p dimensions, k
mixture weights, and k itself.



Concepts of [supervised] classification
The multivariate dataset under study represents a new test set that is a mixture 

of classes that have been defined in advance, either from astrophysical 
theory or training sets.  The prior knowledge of the number, location & 
morphology of the classes in p-space gives a huge advantage over 
unsupervised clustering.  

As with clustering, some classification methods are parametric assuming 
multivariate normal (MVN) distributions within each class (mixure models), 
while others are nonparametric.  Methods often labeled data mining or 
machine learning. 

Automated classification techniques are particularly important in wide-field 
astronomical surveys which collect a wide variety of astronomical objects: 
stars, galaxies, active galactic nuclei. 

Wide-field surveys include: Optical CRTS, PTF, ASAS, Pan-STARRS, VISTA, DES, 
LSST, LAMOST;  X-ray RASS, eROSITA; Infrared IRAS, MSX, Akari, WISE; Radio
NVSS, FIRST, PKS, LOFAR, MWO



Classical parametric classifiers

Assigning new members to two preexisting MVN clusters (Wald, 1940s)

The dataset                                   consists of two clusters with 

A new object with location x0is assigned to Cluster 1 if

where                is the `cost’ of misclassifying an object into cluster 1 when 
it truly belongs in cluster 2, and        is the prior knowledge of the fraction 
of objects lying in cluster 1.  These play roles similar to Type 1 & 2 errors in 
hypothesis testing.  



Linear discriminant analysis (Fisher 1930s)

LDA finds a linear combination of variables (a p-dimensional hyperplane) that 
maximally separates two classes with known MVN distributions.   The 
separation is measured by the ratio of the between-cluster variance B and 
the within-cluster variance W.  The maximum separation occurs for

where the vector a is perpendicular to the separating plane.  The resulting 
separating plane can be used to understand the nature of the clustering, 
or can be applied for classification of new objects with unknown class.   



Linear discriminant analysis (LDA, Fisher 1930s)  LDA finds a linear 
combination of variables (a p-dimensional hyperplane) that maximally 
separates two classes with known MVN distributions.   The separation is 
measured by the ratio of the between-cluster variance B and the within-
cluster variance W. The separating plane can be interpreted scientifically 
and used to classify new objects. 

Nonparametric linear classifiers that relax the MVN assumption include the 
perceptron algorithm (1950s) that lies at the foundation of artificial 
neural networks, and the naïve Bayes classifier.  

Support Vector Machines (SVM), developed by Vladimir Vapnik from the 
1960-1990s, have emerged as extremely powerful generalizations of LDA 
and the perceptron.  It allows nonlinear surfaces to separate curves in p-
space and `soft’ margins to permit misclassifications.  SVMs are very 
powerful and widely used today.

Linear classifiers



Support Vector Machines (SVMs), developed by Vladimir Vapnik from the 1960-1990s, 
have emerged as extremely powerful generalizations of LDA and the perceptron.  
To treat cases where the hypercurve separating classes is nonlinear in p-space, the 
dataset is mapped by nonlinear functions onto a higher dimensional space where 
the classes can be separated by linear hyperplanes.   The support vectors straddle 
the optimal hyperplane.  Kernel density estimation (with polynomial or Gaussian 
kernels) plays an important role in the calculation that involves quadratic 
programming with Lagrangian multipliers.  `Soft margins’ allow the separation to 
have misclassifications.    

http://www.youtube.com/watch?v=3liCbRZPrZA
http://www.jstatsoft.org/v15/i09/paper

http://www.youtube.com/watch?v=3liCbRZPrZA
http://www.jstatsoft.org/v15/i09/paper


Classification trees

Recall how unsupervised hierarchical clustering techniques construct a 
dendrogram from a multivariate dataset, where objects and subclusters
that are `close’ to each other (according to some distance metric and 
agglomeration algorithm) form branches of a tree where the `trunk’ 
represents the full dataset and the `leaves’ represent individual objects.

Recall also how astronomers often design heuristic decision rules for 
classification based on criteria like `color index > 0.4 mag’ or `burst 
duration < 2 seconds’.

In 1963, Morgan & Sonquist proposed a recursive partitioning algorithm to 
construct decision trees for supervised classification.  These were 
extensively developed from the 1970s-2000s by Leo Breiman at UC 
Berkeley.  His methods are known as Classification and Regression Trees 
(CART).  Modern versions of CART often use the ID3 or C4.5 algorithm 
with tree reliability evaluated using the bootstrap-based Random Forests
procedure.  



CART
CART supervised classification procedure that constructs dendrograms for the 

training set where decisions are based on sequences of single-variable 
decision rules and the branching is designed to concentrate objects of a single 
class. 

CART has important advantages:  
– it does not depend on a distance metric (e.g. Euclidean distances)
– calculations are local with low memory requirements
– it is nonparametric (e.g. class shapes need not be MVN)
– it works for any combination of real, integer, categorical, or binary variables
– the same rules are used for small and large branches (i.e. recursive procedure)
– each data point falls into a unique terminal branch (node), and each terminal 

node has a unique set of rules (i.e. no branch crossings)
– it has objective mathematical procedures for constructing the full tree (leaves 

to trunk), pruning the tree, and evaluating the reliability of branches

However, CART does not give probabilities of membership, 
and it requires some user choices of technique and thresholds

Classification tree: outcomes assign objects to classes
Regression tree: outcome is a real number for a response variable



CART decision rules (choice of variable, value of split) minimizes the 
`impurity’ of branching, with several measures of impurity in common 
use:

where Pj is the fraction of training set objects in the j-th class

Splitting stops, or a full tree is pruned, to some threshold level of impurity 
improvement or some penalty for model complexity.     

Branch reliability can be evaluated by `votes’ of trees constructed from 
many bootstraps of the training set, bagging.  An important variant of 
bagging is Breiman’s Random Forest.  Weak classifications can be 
weighted and combined, boosting. 



k-Nearest Neighbor classifiers
This is an extremely simple classification algorithm:

– Define a training set, test set, distance metric, and integer parameter k
– For each member of the test set, locate the k nearest neighbors of the 

training set.  k plays a role similar to the bandwidth of kernel density 
estimation (KDE) or the window in local regression (e.g. LOESS).  

– These points `vote’, and the test set point class is set to be the most 
common class of the k neighbors.  For two classes, majority wins. 

As with bandwidth selection in KDE, k can be chosen to optimize some 
quantity.  For classification, one may choose the expected  cost of 
misclassification, 

k-nn classifiers are often used in machine learning; e.g. for optical character 
recognition.   k-nn can be computationally expensive for Big Data, as 
accuracy generally increases with k.  



As with KDE, the method encounters problem where both high and low 
density of data points are present …. we need an adaptive smoother.

Discriminant Adaptive Nearest Neighbor (DANN) is a method where the 
distance metric (i.e. the standardization of the variables) shrinks when the 
local density of points is high.  The method is related to LDA.   The locally 
distorted distance metric allows classification in the presence of highly-
inhomogeneous, elongated and curved structures in p-space.  

Other methods for difficult classification problems include:
– Machete & Scythe recursive partitionings (Friedman 1994)
– ADAptive MEtric Nearest Neighbor algorithm (Domeniconi et al. 2002)
– Large Margin Nearest Neighbor based on local Mahalanobis distance metrics 

(Weinberger & Saul 2009)
– Adaptive k-nn classification is related to Bayesian diffusion decision model in 

neuroscience (Noh et al. 2012)
– …. …. ….   [extensive research in data mining techniques]



Artificial Neural Networks

ANNs are algorithms to find heuristic nonlinear rules for distinguishing classes 
in multivariate training datasets which can then be applied to test 
datasets. This is the most widely used data mining method in astronomy 
with ~700 papers since c.1990 accelerating to ~70/yr in 2012.   

A 3- or 4-layered structure is created

where the nxp data are inputs and the 

p classes are outputs.  The intermediate

`hidden’ layers are weightings that 

probabilistically assign inputs to outputs

(a generalization of the perceptron). 



Hidden layer weightings are iteratively reset to improve classification using 
back propagation, a gradient descent procedure.    

Many choices in network architecture, `activation functions’ at the hidden 
nodes, optimality criteria (e.g. reducing the mean square error in 
classification), and stopping rules.   Bayesian variants.

Convergence is not guaranteed.   

Usually not possible to interpret the weightings … the proverbial `black box’.

Often highly effective for complex classification 
problems with large training sets.  
Not advised for simple problems.



Deep Learning
Recently, superb classification of very difficult problems has been achieved using 
convolutional neural networks with many hidden layers.  Requires very large 
training sets and very heavy computing.   Example: 

translate.google.com
English         Chinese

Deep Learning is transforming modern industries like:  social media information 
propagation, speech recognition, targeted advertising, autonomous vehicles, 
biometrics & video surveillance, military operations, etc., etc. 

Papers in the astronomical literature using Deep Learning are rapidly appearin:  
i~1/month in 2017, ~1/week in 2018, ~1/day in 2019.  

Text:  Deep Learning, 2016 I. Goodfellow, Y. Bengio, A. Courville, MIT Press



Final remarks
The word `classification’ appeared in ~7000 astronomy papers in 2018 (25%).    

Astronomers encounter endless problems where patterns are sought in 
heterogeneous data by placing objects into distinct classes.  

Most astronomers still use heuristic procedures for classification, but 
quantitative methods are increasingly used:

– If no prior knowledge  on classes is available, then parametric  mixture 
model or (very uncertain) nonparametric clustering methods 

– If prior knowledge is available, then a vast suite of powerful 
supervised classification methods are available: SVMs, CARTs with 
boosting & bagging, k-NNs, ANNs 

For complex classification problems (e.g. 20 classes in 10-dimensional space 
with non-MVN structures), parametric models may not be effective while 
nonparametric methods (CART, k-NN classifiers, ANN) can be successful.  
Large and reliable training sets are needed for such problems.  Deep 
Learning will allow brilliant new advances in astronomy. 


