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Bayesian inference

Bayesian inference is a method of statistical inference in which 
Bayes’ theorem is used to update the probability for a 
hypothesis as more evidence or information becomes 
available. Bayesian inference derives the posterior probability 
as a consequence of two antecedents: a prior probability and a 
“likelihood function” derived from a statistical model for the 
observed data.  

-- Wikipedia 2019



Rapid rise of Bayesian analyses
in mathematics and astronomy
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Axioms of probability

Axiom 1:

Axiom 2:

Axiom 3:  For mutually exclusive events

For an event A, 

For a sample space W,

= “or”, union =  “and”, intersection =  “given”, conditioned on



Conditional probability

The probability of event A given event B is equal to the 
intersection of A and B normalized by the probability of B

Example: The conditional probability that a star has solar mass and a Jovian 
planet with ellipticity 0.5-0.6 is equal to the product of the probability that a 
star is a G star (say P~1%) and the probability that any star has a e=0.5-0.6 
Jovian planet (say P~20%).  The conditional probability is thus P~0.2%. 



,

Another astronomical example: 



Bayes’ Theorem

the Law of Total Probability

For Bk possible outcomes, using the definition of conditional probability and the 
Law of Total Probability,  



Bayes’ Theorem is thus just a necessary result of probability theory, or logic,
based on the three Axioms.  In Bayesian inference the terms are given a 
specific meaning (MSMA, p.63-64)

P(Mi|X) = conditional probability of Mi given X = posterior probability density 
P(X|Mi)=  conditional probability of X given Mi = likelihood function
P(Mi) = prior or marginal probability of Mi = prior information 
P(X) [denominator] = marginal probability of X = normalizing constant

Let X represent the data, and M represent the space of models or hypotheses 
that depend on parameters theta

Bayes’ Theorem in English:
The posterior distribution of a chosen model given the data is equal to the 
normalized product of (the likelihood of the data for that model) and (the 
prior probability that the model is true without reference to the data)



Once the prior distribution and alternative hypotheses (range of q
parameters) are specified, and the data are obtained, the posterior 
distribution can be calculated.  This distribution can be plotted in the 
p-space of its parameters.  These plots give information on any non-
Gaussianity and multimodality of the posterior.  Typically, the scientist 
is interested in the `best’ Bayesian estimator for the parameters; i.e. 
the maximum (mode) of the posterior.  The credible region around this 
value is then estimated.    

Posterior distribution

Prior distributions
This is often the controversial aspect of Bayesian inference, because 
subjective judgment or simplistic uninformative priors are often used.  
For uniform priors, maximizing the posterior often gives the same 
result as maximum likelihood estimation, although interpretation of 
results differ.  Bayesian inference is most effective when the scientist 
wants to bias the likelihood based on the data using scientifically 
meaningful prior constraints on the the parameters.  



An astronomical example of Bayesian inference
Is this new active galactic nucleus radio-loud?

Let X be a random variable taking two values: X=1 indicates Yes and X=0 is No.
Let q be a parameter denoting AGN radio-loudness: q1 indicates Yes, q2 is No

From previous AGN surveys in the visible & X-ray bands, the astronomer expects a probability of 
radio-loudness:  P(q= q1) = 0.1.  

The new AGN under study was observed with a radio telescope sensitive enough to measure radio-
loudness 80% of the time in radio-loud AGN:
P(X=1|q1) = 0.8.  However, 30% of the time the telescope detects irrelevant radio emission from star 
formation in the host galaxy: P(X=1|q2) = 0.3. 



Use Bayes’ Theorem to calculate the chances than an AGN with detected 
radio emission is truly a radio-loud AGN:

likelihood

sum of marginal probs

prior prob

Wow!  Only 23% of true radio-loud AGN are clearly identified in this 
survey:  77% are either false negatives or false positives.  Trying different 
assumptions shows that the result is moderately sensitive to the value of 
the prior (0.10) but is very sensitive to the false positive fraction (0.30).  If 
this is reduced to 0.05 (e.g. through radio polarization & spectral study), 
then the discovery fraction of true radio-loud AGN rises to 95%.  Bayesian 
calculations can help the astronomer evaluate how the science goals can 
be better achieved in a future experiment.  



Many Bayesian studies (in astronomy and elsewhere) do not have an 
empirical or subjective basis for specifying the distribution of a model 
parameter in advance of the experiment/observation at hand.  In such 
cases, an uninformative prior is used to weight the likelihood in Bayes’ 
Theorem.  

These priors make few or no assumptions about the distribution of 
model parameters.  Two common choices:

• The uniform distribution over the full space of possible values.  
This often reproduces results from maximum likelihood 
estimation.

• Jeffreys prior p(q) = | I(q) |1/2, I is the Fisher Information 
Matrix

Prior distributions: Uninformative priors



However, use of uninformative priors is controversial and many 
statisticians do not support their use: 
1. Many are improper priors that do not integrate to unity (often the 

integral is infinite).  Thus they are not p.d.f.’s and should not be used. 
2. The results depend on arbitrary choices. In an astrophysical model, is 

the prior of X or log(X) assumed to be uniform?   For the normal 
model, is the prior of the variance or the standard deviation assumed 
to be uniform?  A uniform s.d. allows Bayesian calculations to 
reproduce many classical results.  

“Because the prior is inescapably part of the model in the Bayesian approach, 
marginal likelihoods, Bayes factors and posterior model probabilities are 
inescapably sensitive to the choice of prior.  In consequence, it is only when those 
priors that differ between alternative models are really precise and meaningful 
representations of prior knowledge that we can justify using Bayes factors and 
posterior model probabilities for model selection.  Even then the computation of 
the marginal likelihood is often difficult.”

Simon Wood, Core Statistics (2015)

A statistician’s worried viewpoint about uninformative priors



Proper use of priors 

A reasonable alternative is to try different reasonable proper priors and, if the 
results are compatible, report them as scientifically reliable results.  

When flat or uninformative priors are used together with estimation using the 
mode of the posterior (MAP or HPD best fit), then we recommend that the 
Bayesian approach be dropped and the Maximum Likelihood Estimation 
formulation be used instead.  

When the prior can be reliably established from detailed scientific information 
available from earlier observations or from astrophysical theory, then we 
encourage use of these informative priors with a Bayesian approach.   However,   
it is wise to examine the relative influence of different reasonable priors, together 
with the data, on the scientific result for the particular situation at hand.

A published Bayesian analysis should communicate the statistical model 
(likelihood) and the prior distribution of all parameters in sufficient detail that the 
inferential calculation is reproducible by other scientists.    



Bayesian posterior
The result of a calculation of Bayes’ Theorem for a dataset and a model space is 
the distribution of the posterior.  Astronomers often plot univariate and 
bivariate projections of a multivariate posterior estimated by MCMC sampling. 

Example: Model of Sunyaev-Zel’dovich distortion to the cosmic microwave background 
spectrum (taking the dust-induced cosmic infrared background (CIB) variations into 
account) applied to 26,111 galaxy clusters from the Sloan Digital Sky Survey         
(Soergel et al. 2017)

Best fit model
Marginal posterior distributions



Bayesian analysis of ionization and metallicity in HII regions.  The top panels 
show joint and marginal posteriors of ionization and O/H abundance using 2 
emission lines.  The bottom panels show the posterior using 8 emission lines.   

Some messier posteriors

(Blanc et al. 2015)



Cooke et al. 2017

Modeling a high-redshift metal-poor 
damped Lya absorption (DLA) system



A high-dimensional posterior

Bull 2017



Bayesian parameter estimation
(or Summarizing the posterior distribution)

Scientists often seek a single `best’ model giving ‘best-fit’ parameters for the 
dataset and the model space, rather than a multivariate distribution of model 
probabilities.  

Three approaches are commonly used in Bayesian inference.  The choice should 
be based on the a previously specified ‘loss function’ (or ‘risk function’) that 
quantifies the scientific value of alternative models.  The principles arise from 
Bayesian decision theory, a branch of information theory.  

• The mode of the posterior distribution.  This is sometimes called the maximum 
a posteriori (MAP) or the highest posterior density (HPD) estimate.  For 
uniform priors or very large datasets, the posterior mode gives model 
parameter values approaching the classical maximum likelihood estimators. For 
an informative prior, the MAP solution is a weighted average of the MLE of the 
prior and the MLE of the data.  In decision theory, the mode is preferred when 
the cost of a wrong answer is high (posterior loss is binary).  

• The median of the posterior is preferred when the cost of a wrong answer is 
low (posterior loss scales as the linear ‘distance’ between models)



• The mean of the posterior distribution.  This a weighted mean of the likelihood 
and the prior:

This is simply the expectation of the posterior distribution. The mean is perferred
for intermediate cost functions (posterior loss scales as the squared distance 
between models).  

J. O. Berger, Statistical Decision Theory and Bayesian Analysis, 2nd ed 1985
C. Robert, The Bayesian Choice: From Decision-Theoretic Foundations to 

Computational Implementation, 2nd ed 2007



Unfortunately, astronomical research does not usually have a 
clear loss function, so astronomers are subjectively choosing to 

report medians, means and modes.

Essentially, the research community must choose a consistent 
summary statistic, much as it chooses a consistent significance 

level (3-sigma) for reporting results of hypothesis tests. 

Some experts have suggested the posterior median for general 
use.   Other experts suggest avoiding summarizing the posterior 

and use/discuss the entire distribution.



Bayesian credible intervals

The Bayesian credible interval of parameter values (or credible region for p-

dimensional models) around the MAP value can be estimated from the 

analytical or computed posterior distribution.   This plays the role of the 

confidence interval in classical statistical inference.     The credible interval can 

be found by solving for lower and upper functions such that 

P(L(X) ≤ q ≤ U(X) | X) = 1-a

where a=0.05, 0.01, etc.  In realistic cases, it is computed numerically by 

computing values of the posterior distribution around the best fit value.  



An important class of hypothesis tests is model selection, the 
comparison of two alternative models for a given dataset.  When 
applied to nested models, this problem is important for deciding 
how many parameters is needed to adequately fit the data in a 
parsimonious fashion.  

Bayesian model selection is based on the  Bayes factor, or ratio of 
posteriors, given by 

The ratio of the probabilities of the two models, or odds ratio, is 
the product of the ratio of likelihoods and the Bayes factor:

Bayesian model selection



The Bayesian odds ratio is equal to the classical likelihood ratio test 
(LRT) when the priors for the two models are equal.  This is often the 
case when the priors are uninformative. 

History: The LRT was established by theorem by  Neyman & Pearson (1933),  and   
Wilks (1938) showed it asymptotically follows a chi-squared distribution.   

Model selection is an example of Bayesian hypothesis testing and has a 
number of advantages over classical hypothesis testing: 

• The Bayes factor automatically accounts for the number of parameters, favoring 
the more complicated model only if the ratio of the likelihoods is sufficiently 
high.   In classical MLE, the penalty for model complexity is debated, and does 
not arise naturally from the mathematics.  

• Both classical and Bayesian analysis often use the Bayesian Information 
Criterion (BIC), which is an approximation to the Bayes factor.

• Bayes factors allow comparison of nonnested models, and Bayesian model 
averaging can be used to account for model uncertainty.



To compute the Bayes factor, we need to calculate the marginal likelihood of each 
model for the available data 

Use of these marginal likelihoods in model selection accounts for differences in model 
complexity – models with larger ‘volumes’ of parameter space are not automatically 
favored, as they are when the LRT is used.  

However, two difficulties arise.  First, it may be hard to compute the marginal 
likelihoods for all parameters and (possibly) for a wide range of models.  Second, the 
marginal likelihoods are sensitive to the prior and will change values for different 
uninformative priors unless the same improper priors are used in all models. 

In practice, it is often easier to compute the approximate than the full odds ratio.  



Many problems have variables or parameters of little scientific interest (e.g. 
detector background vs. astronomical signal).  Bayesian formulations allow 
direct marginalization (integration) over nuisance variables.

Consider a case of a vector of k parameters where we are interested in the ith
parameter and not the others: 

The distribution of the interesting parameter qi takes into account 
information about all of the other parameters.  This `averages out’ the 
influence of other parameters. 

Bayesian marginalization



Hierarchical Bayes’ modeling
When a Bayesian model is based on a prior distribution that itself has 
unknown parameters, the calculation must simultaneously solve for the 
model parameters and the prior hyperparameters. This is a type of 
hierarchical Bayes’ model.  The acquisition of additional data simultaneously 
updates the prior distribution and constrains the model  parameters of 
interest. Examples: 

• the prior is a mixture of two distributions with the mixing fraction serving 
as a hyperparameter

• the model parameters q are generated from a process governed by a 
hyperparameter y.  Then (ignoring normalizations)

Hierarchical Bayesian models are increasingly common in the astronomical 
literature.  



Introduction to Bayesian computing 

While the concepts of inverse probability and Bayesian inference were 
introduced Simon Pierre Laplace two centuries ago, prior to ~1990, Bayesian 
inferential applications were largely restricted to simple problems.  

Bayesian estimation requires considerable more computation than least 
squares estimation (system of linear equations) or maximum likelihood 
estimation (optimization of a single likelihood function) because it often 
requires examination of, and sometimes integration over, the full space of 
possible models.   Modern astrophysical models can have dozens (or more) 
parameters, requiring mapping of the prior-weighted likelihood function in 
high dimensions.  

Markov chain Monte Carlo (MCMC) methods can, with varying degrees of 
efficiency, map the posterior draw sequential samples from the parameter 
space where the likelihood and prior are evaluated.  For simpler problems, 
the Laplacian approximation can be much more efficient.  Integrated Nested 
Laplacian Approximation (INLA) can be effective for many situations in 
astronomy (arxiv:1802.06280).  



https://chi-feng.github.io/mcmc-demo/app.html

Interactive visualization of several
MCMC algorithms

Strong background on Bayesian computation

Vignettes for R/CRAN package LaplacesDemon including

https://web.archive.org/web/20150531112558/http://www.baye
sian-inference.com:80/mcmc

https://chi-feng.github.io/mcmc-demo/app.html
https://cran.r-project.org/web/packages/LaplacesDemon/index.html
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmc


Stochastic processes I

Consider measurements of the Doppler motion of a star orbited by a 
companion star or exoplanet.  A collection of Doppler velocities is a 
function of t is an example of a stochastic process: for each observed 
time t, X(t) is a random variable.  t can represent any fixed variable: e.g. 
time, space (1D, 3D, …), space-time, or a lattice parameter space. 
Astronomers encounter them as functions of fixed time-like variables 
such as:

Brightness B(RA,Dec) defines an image

Brightness B(wavelength) defines a spectrum

Brightness B(time) defines a light curve 

Spectral index or radial velocity (RA,Dec) defines other images

Density r(x,y,z,vx,vy,vz) defines a fluid flow



Stochastic processes II

Random variables can be functions of discrete or continuous time-like variables 
(e.g. pixelated images or lightcurve with accurate timestamps) 

The r.v.’s themselves can assume discrete or continuous values (e.g. photon 
arrivals or real-valued brightness). 

The observations can be sequences of i.i.d. r.v.’s, or they can exhibit dependencies.  
These dependencies can arise either from the instrument  (e.g. point spread 
function in an image) or from the underlying physical process (e.g. timescale for 
brightness variations in an accretion disk).  

A stochastic process is stationary if (X(t1), X(t2), … X(tk)) and (X(t1+d), X(t2+d), … 
X(tk+d)) have the same joint distribution for all d, t1, …, tk and k≥1.  
Note that trends in the mean cause nonstationarity.  The spatial structure of an 
image with stars and galaxies is nonstationary.  The brightness variations of a 
variable star may or may not be stationary.  



Markov chains

A stochastic process {Xn} is called a discrete time Markov chain if the 
distribution of Xn+1 given the past Xn, …, X0 depends only on the immediate 
past.  Further suppose that the probability for transitions from states i to j are 
fixed, Pij.  Formally, this process is written:

P{Xn+1 = j | Xn=i, Xn-1=in-1, … X0=i0} = P(Xn+1=j|Xn=i) = Pij

For all states i=i0 to in-1 and all times n≥0

This process is called a Markov chain. The values of Xn are called states. They 
need not be integers. 

A simple Markov chain is the random walk, Pi,i+1 = p = 1-Pi,i-1.



Markov Chains II

Pij can be written as a matrix of one-step transition conditional probabilities 
from i to j.  An initial state at time 0 needs to be specified to give 
unconditional probability distributions at time n. Note that state i may 
communicate with some states j but not with some other states k.   States 
that communicate are in the same class

Constructing Markov Chains with random numbers to generate i.i.d. 
sequences of values with a specified p.d.f. provide a suite of algorithms for 
simulating complicated probability distributions.  These are called Markov 
Chain Monte Carlo techniques.   

Sometimes a Markov process is not directly visible, but some outcome from 
the chain (e.g. a signal when it visits state i) is available.   These hidden 
Markov models are valuable for a variety of inference problems. 



Markov chain Monte Carlo techniques
• Gibbs sampler Here the multivariate problem is simplified to a sequence of 

univariate function evaluations.  Consider a 3-dimensional parameter space 
(q1, q2,q3).  Starting at an initial location q0, make a random step, simulate 
q11 | (q02, q03,X), q12 | (q11, q03,X) and q13 | (q11, q12,X), and calculate the 
posterior (prior-weighted likelihood) at the new location.   Continue similar 
iterations to form a chain, and create multiple chains with different starting 
points and random steps.  For high-dimensional problems, the sequence of 
variable updates can be varied, and the space can be blocked into 
subspaces that are updated sequentially.  

• Metropolis-Hastings algorithm  This procedure increases the efficiency of 
the chain’s mapping of the posterior distribution by accepting the next step 
forward if it increases the posterior or satisfies some probability rule.  
Strategies for jumping around the parameter space avoid being trapped in 
small regions of the distribution.  An early and common procedure is to 
combine the Gibbs and Metropolis strategies 

Metropolis, Rosenbluth, Teller 1953, "Equation of State Calculations by Fast 
Computing Machines." J. Chem. Phys. MANIAC I computer



Convergence measures and stopping rules for MCMC simulations are 
very important.  Unlike the EM Algorithm for MLE, there are no 
theorems guaranteeing convergence on a maximum in the posterior 
distribution.  Millions of iterations may be needed for a single MCMC 
chain, and many chains may to needed to obtain reliable results.

Common stopping criteria include: 
• chain standard deviation becomes small
• autocorrelation within the chains becomes small 
• within-chain and between-chain variances approach equality 

(Gelman-Rubin diagnostic)

Dozens of MCMC-type methods have been developed in the past  
~20 years, and many are implemented in ~100 R/CRAN packages.  



Algorithms
MCMC algorithms in the LaplacesDemon CRAN package:

Adaptive Directional Metropolis-within-Gibbs (ADMG)
Adaptive Griddy-Gibbs (AGG)
Adaptive Hamiltonian Monte Carlo (AHMC)
Adaptive Metropolis (AM)
Adaptive Metropolis-within-Gibbs (AMWG)
Adaptive-Mixture Metropolis (AMM)
Affine-Invariant Ensemble Sampler (AIES)
Automated Factor Slice Sampler (AFSS)
Componentwise Hit-And-Run Metropolis (CHARM)
Delayed Rejection Adaptive Metropolis (DRAM)
Delayed Rejection Metropolis (DRM)
Differential Evolution Markov Chain (DEMC)
Elliptical Slice Sampler (ESS)
Gibbs Sampler (Gibbs)
Griddy-Gibbs (GG)
Hamiltonian Monte Carlo (HMC)
Hamiltonian Monte Carlo with Dual-Averaging (HMCDA)
Hit-And-Run Metropolis (HARM)
Independence Metropolis (IM)
Interchain Adaptation (INCA)
…  …  …

https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/software
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcadmg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcagg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcahmc
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcam
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcamwg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcamm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcaies
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcafss
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmccharm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcdram
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcdrm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcdemc
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcess
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcgibbs
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcgg
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmchmc
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmchmcda
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcharm
https://web.archive.org/web/20150531112558/http:/www.bayesian-inference.com:80/mcmcim


Two variants with code developed by astrostatisticians have acquired sudden 

popularity in astronomy:

• MultiNest This method was designed for complex posterior 

distributions with many modes (peaks) or degeneracies in high 

dimensions by Feroz & Hobson (Mon Not R Astro Soc 2008-09).  A 

clustered nested sampling procedure reduces the computations for 

calculating the Bayesian evidence and posteriors.  Written in Fortran 

90, it has wrappers for C, C++, R, Python and Matlab. 

• Affine-Invariant Ensemble Sampler This method was designed for 

badly scaled parameter spaces and skewed posterior distributions by 

Goodman & Weare (Comm Appl Math Comp Sci 2010).  Here >2K
chains are simultaneous run, each with k starting points. For each 

iteration, the walkers are assigned new positions based on a scaled 

distance to another randomly-selected chain.   Foreman-Mackey, Hogg, 

Lang, Goodman (Pub Astro Soc Pacific 2013) introduced a public-

domain parallelized Python implementation called emcee with 

enthusiastic usage by astronomers.  



Characteristics of MCMC algorithms

Chain properties:  Non-Markovian (e.g. adaptive, new values not just based 
on last value), recurrent (retuens to a chosen state), periodic (cyclical);y 
recurrent, irreducible (all states accessible). A Markov chain with a stationary, 
aperiodic, irreducible distribution is called ergodic with advantageous 
properties (central limit theorem, convergence). 

Proposal generation: multivariate proposal with all parameters, or proposal 
for individual parameters (slower)

Acceptance rate: ratio of accepted proposals to total iterations

Blockwise sampling: Model parameters are divided into groups of correlated 
variables that are sampled separately.   Allows higher acceptance rates, and 
tuning algorithms for different blocks.  However convergence may be 
inhibited by inter-block correlation.  
Highest posterior density intervals



Metropolis-Hastings algorithm

Consider a function y of a time-like series x(t).  We want to construct a 
sequence of y values that sample a target distribution.  We start with a 
‘proposal’ distribution q that is simpler, and wider,  than the (often 
unknown) target distribution.  At each iteration t of the chain, perform two 
operations:

Sample                              with probability 

If accepted, assign y to be x(t+1).  If reject, do nothing and try again. 

If q(y|x)=p(y), then the samples are independent
If q(y|x_ = q(y), we have the independence sampler
If q(y|x) = q(|y-x|), the we have a Metropolis random-walk 



Convergence measures and stopping rules for MCMC simulations are 
very important.  Unlike the EM Algorithm, there are no theorems 
guaranteeing convergence on a maximum in the posterior 
distribution.  Millions of iterations may be needed for a single MCMC 
chain, and many chains may to needed to obtain reliable results.

Common stopping criteria include: 
• chain standard deviation becomes small
• autocorrelation within the chains becomes small 
• within-chain and between-chain variances approach equality 

(Gelman-Rubin diagnostic)

Dozens of MCMC-type methods have been developed in the past  
~20 years, and many are implemented in ~100 R/CRAN packages.  
Two variants developed by astrostatisticians have acquired sudden 
popularity in astronomy:



Stopping rules and convergence diagnostics

There is no theorem to establish
when a Markov chain has converged.  

All convergence diagnostics and stopping rules
are suggestive only.  

A simple measure of convergence is when the MCMC reaches a user-
specified scatter level.  However, due to the autocorrelation, the 
number of iterations N overestimates the effective sample size.  There 
are various suggested corrections to the standard deviation involving 
the correlation coefficient or ACF: 

Geyer 1992



Gelman-Rubin diagnostic
Names:  Potential scale reduction factor, G-R diagnostic, G-R shrink factor, R-hat

Concept: Convergence is reasonably achieved when chains have ‘forgotten’ starting values and 
recent outputs of different chains are indistinguishable.   The variance of the chain ensemble is 
the sum of within-chain and between-chain variances for n iterations/chain. If the chains have 
not converged, W (mean of the variances within each chain) will be too small and B too large.  
The initial values for the chains must be overdispersed compared to the final posterior 
distribution (including possible multiple modes).  

R diagnostic: Convergence is reasonable achieved when  1.0 < R ≤ 1.1 where

Gelman, A. & Rubin, D.B. (1992). Inference from iterative simulation using multiple

sequences. Statistical Science, 7, p. 457–511

Brooks, S.P. & Gelman, A. (1998) General methods for monitoring convergence of interactive  

simulations, J. Computational & Graphical Statistics, 7 434-455

chain ensemble variance:



Convergence diagnostics graphics

PDF estimate plot:   Univariate or bivariate kernel density estimator plots of 
posterior from MCMC chains.  Note assumptions underlying bandwidth 

selection.  Histograms for discrete valued posteriors.

Trace plots: Time series-like plot of values for each variable in a chain

Autocorrelation function plot: Plot of ACF for each variable in each chain; 
high autocorrelation shows slow mixing and slow convergence. 

Cross-correlatkon plot:  Tile plot of correlations between parameters

ROC curve and separation plot: For problems with binary response variable

Caterpillar plot: For high-dimensional problems, stacked boxplot showing 
HPD & quantiles for each variable

Cumulative quantile plot: Shows evolution of 50%, 99%, …  quantiles for n 
iterations

Gelman-Rubin-Brooks plot: G-R diagnostic vs. n iterations.  Important to see 
recent fluctuations, rather than just test for R~1.0.  

Geweke-Brooks plot: Shows Z-score (measuring similarity of beginning & end 
of a Markov chain) as increasing fractions of the early chain are omitted.



MCMC convergence in R

Diagnostics:
Gelman and Rubin
Geweke
Heidelberger and Welch
Raftery and Lewis 
Brooks and Gelman multivariate shrink factors

CRAN packages:
coda
LaplacesDemon
ggmcmc
boa

Many astronomers are not conducting sufficient tests 
to insure MCMC convergence



Astronomical example of Bayesian computation:
Supernova Type Ia cosmology 

See R script running Stan code with Hamiltonian MCMC in files:
Hilbe_SNIa.pdf
Hilbe_SNIa.R

excerpted from 
Bayesian Models for Astrophysical Data using R, Python, JAGS and Stan
by Joseph Hilbe, Rafael de Souza & Emille Ishida (2017)

https://www.cambridge.org/core/books/bayesian-models-for-astrophysical-data/A521B3BB3A2E1621EE1B907E87207218


Philosophical considerations for model fitting:
Comparing classical and Bayesian approaches 

A Bayesian views probability as the plausibility of a situation or 
interpretation based on a combination of current and past information. 

A frequentist views probability as the chance of a situation or interpretation 
assuming many hypothetical experiments were made, without consideration 
of past information.   

Bayesian calculations average over model space, while frequentist 
calculations averages over sample space: 

Bayesian:  Data are fixed, hypotheses vary
Frequentist:  Hypothesis is fixed, data vary

`Why isn’t every physicist a Bayesian?’  (particle physicist R. Cousins)



• For many simple situations, frequentist and Bayesian solutions are 
(nearly) identical

• Frequentist estimation is typically simpler mathematically and 
computationally.  Except for trivial problems, Bayesian estimation 
often require arduous computation for the calculation of posteriors in 
the full space of possible parameter values

• Bayesian estimation will be biased if the prior distributions are 
misspecified.  If priors are not known, MLEs may be preferred. 
Informative Bayesian priors can arise from astrophysical theory  
and/or previous empirical study. 



• Bayesian model selection has advantages over frequentist
model selection.  The Bayes Factor and BIC can evaluate 
evidence in favor of (not just against) a model; be applied to 
non-nested model alternatives;  incorporates external (prior) 
information; and has a natural compensation for model 
compexity (Occam’s Razor).  However, Bayesian model 
selection does not give formal probabilities. 

• Markov chain Monte Carlo (MCMC) calculations is not 
intrinsically related to Bayesian inference … they are just  
convenient numerical tools for some applications.  Other, 
simpler calculations (such as the Laplace approximation, INLA) 
or more complex calculations (such as Approximate Bayesian 
Computation) may be appropriate for a given problem.  



Some disadvantages of Bayesian inference 

Bayesian inference depends on the specification of a large, and often             
ill-defined, space of possible models.  

For each possible model, Bayesian inference requires quantitative 
statement of the distribution of each models of interest prior to the 
acquisition of data.  This often gives a subjective element to the 
procedure. 

Bayesian model fitting requires specification of, and integration over, a 
universe of alternative theories.  This is often both conceptually and 
computationally difficult. Simulations may take millions of iterations and 
may not converge.  MLE is much less computationally demanding. 



Some advantages of Bayesian inference

When the scientist indeed have prior knowledge (from previous 
observations or from astrophysical theory) of the parameter 
distributions, this can readily be incorporated into the Bayesian prior. 
Bayesian inference takes full account of this information.  Such 
ancillary information and can only be included into frequentist
calculations with difficulty.  

Bayesian `marginalization' can treat the effects of nuisance variables 
(e.g systematic error, unobservable or uninteresting variables) with 
greater transparency than is often achieved with frequentist
calculations. 

Bayesian hypothesis tests treat hypotheses symmetrically, and 
Bayesian model selection can give probabilities that a model is correct.  
Classical hypothesis tests only give probabilities that a model is 
incorrect. 



An astronomer’s viewpoint about Bayesian applications 
(Feigelson)

Bayesian inference is often used in decision theory where a 
decision must be made, even a decision to do nothing.  In 
astronomical research, a conclusion does not have to be reported 
unless new scientific insights emerge.  

• If there is no prior evidence, then use maximum likelihood 
estimation, and report results only if the parameter estimates 
are scientifically interesting.  

• If there is prior evidence, then use Bayesian inference, and 
report results only if the parameter estimates are improved by 
the new evidence to a scientifically interesting degree.  



Broad advice on choosing inferential approach

When little is known about a scientific problem and the questions 
addressed are straightforward, then nonparametric statistics and 
hypothesis tests may be most appropriate. (MSMA Chpts 3.5 & 5)  

When a parametric model, either heuristic or astrophysical, can be 
reasonably applied, and the experimental situation is relatively 
simple, then frequentist point estimation may be valuable (least 
squares & MLE). (MSMA Chpts 3.4 & 4)

Bayesian inference is best pursued when the situation is known to 
have external constraints (informative priors based on real knowledge 
from previous astronomical observations or from astrophysical 
theory), nuisance variables are present, and/or hierarchical 
relationships exist between variables.  (MSMA Chpt 3.8)



Don’t hesitate to pursue multiple avenues of analysis

1. Nonparametrics – ‘Let the data speak for themselves’ (Fisher?)

1. Maximum likelihood estimation – Can the data, considered in 
isolation, be well-fit by a chosen mathematical model?  What are the 
best-fit parameter values? Is the best fit a good fit?

1. Bayesian with simple priors – What influence does prior knowledge 
about the parameters have on the best-fit solution?  

1. Hierarchical Bayes – What can we learn about more complicated 
models with latent variables, prior hyperparameters, several 
modeling stages, etc.  


