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Time series in astronomy

Periodic phenomena: binary orbits (stars, extrasolar
planets); stellar rotation (radio pulsars); pulsation
(helioseismology, Cepheids)

Stochastic phenomena: accretion (CVs, X-ray binaries,
Seyfert gals, quasars); scintillation (interplanetary &
interstellar media); jet variations (blazars)

Explosive phenomena: thermonuclear (novae, X-ray
bursts), magnetic reconnection (solar/stellar flares), star
death (supernovae, gamma-ray bursts)



Difficulties in astronomical time series

Gapped data streams:
Diurnal & monthly cycles; satellite orbital cycles;
telescope allocations

Heteroscedastic measurement errors:
Signal-to-noise ratio differs from point to point

Poisson processes:
Individual photon/particle events in high-energy
astronomy

Variety of temporal behaviors



Concepts of time series analysis

Stationarity The temporal behavior, whether deterministic (e.g. orbit) or
stochastic, is statistically unchanged by shifts in time. Types of
nonstationarity include: trends (secular changes in mean value),
heteroscedasticity (changes in variance), and change points (different
behaviors before and after t0). GRS 1915 is very nonstationary.

Periodicity The measured levels repeat themselves deterministically
with one or more periods. The signal becomes concentrated in frequency
domain study: spectral analysis, harmonic analysis, Fourier analysis.
These methods classically use trigonometric sine and cosine functions,
but this is not required.



Autocorrelation The measured levels at time t0 depend on levels
measured at previous times. The autocorrelation can be deterministic
(trend or periodicity) or can include a stochastic component. For an
evenly spaced time series, the autocorrelation function (ACF) is the
fraction of the total variance due to correlated values at lag k time steps:

ρ̂(k) = ACF (k) =

∑n−k
t=1 (xt − x̄)(xt+k − x̄)∑n

t=1(xt − x̄)2
.

If the ACF has significant signal at small k, the time series has
short-term memory. If the signal extends to large k, it has long-term
memory. The latter includes red noise or 1/fα-type processes that are
often seen in (astro)physical systems. A stochastic time series with
insignificant ACF values at all k exhibits white noise, often assumed to
have a Gaussian (normal) distribution.



Other important concepts Nonlinear (in the parameters) time series
(including chaotic systems); multivariate time series (including
autoregressive with lags); time-frequency analysis (for nonstationary
periodic behaviors); wavelet analysis (for multiscale aperiodic variations);
state space models (hierarchical deterministic + stochastic models with
MLE coefficients updated by the Kalman filter); unevenly-spaced time
series (methods primarily developed by astronomers).



Nonparametric time domain methods

Autocorrelation function

This sample ACF is an estimator of the correlation between
the xt and xt−k in an evenly-spaced time series. For zero mean
and normal errors, the ACF is asymptotically normal with
variance V arρ̂ = [n− k]/[n(n+ 2)]. This allow probability
statements to be made about the ACF.

The partial autocorrelation function (PACF) estimates the
correlation with the linear effect of the intermediate
observations, xt−1, ..., xt−k+1, removed. Calculate with the
Durbin-Levinson algorithm based on an autoregressive model.



Density estimation

Standard methods of density estimation are often used on time
series: kernel density estimation, local regressions, etc.



Ginga observations of X-ray binary GX 5-1

GX 5-1 is a binary star system with gas from a normal companion
accreting onto a neutron star. Highly variable X-rays are produced in the
inner accretion disk. X-ray binary time series often show ‘red noise’ and
‘quasi-periodic oscillations’, probably from inhomogeneities in the disk.
We plot below the first 5000 of 65,536 count rates from Ginga satellite
observations during the 1980s.

R script:
gx=scan(”GX.dat”)
t=1:5000
plot(t,gx[1:5000],pch=20)





Kernel smoothing of GX 5+1 time series
Normal kernel, bandwidth = 7 bins
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Autocorrelation functions

acf(GX, lwd=3) pacf(GX, lwd=3)



Parametric time domain methods: ARMA models

Autoregressive moving average model

Very common model in human and engineering sciences,
designed for aperiodic autocorrelated time series (e.g. 1/f-type
‘red noise’). Easily fit by maximum-likelihood. Disadvantage:
parameter values are difficult to interpret physically.

AR(p) model xt = φ1xt−1 + φ2xt−2 + . . .+ φpxt−p + wt

MA(q) model xt = wt + θ1wt−1 + . . .+ θqwt−q

The AR model is recursive with memory of past values. The
MA model is the moving average across a window of size
q + 1. ARMA(p,q) combines these two characteristics.



Many extensions to ARMA models:

VAR (vector autoregressive)

ARFIMA (ARIMA with long-memory component)

GARCH (generalized autoregressive conditional
heteroscedastic for stochastic volatility)

Dozens of variants from econometrics: see
ftp://ftp.econ.au.dk/creates/rp/08/rp08 49.pdf.



GX 5+1 modeling

ar(x = GX, method = ”mle”)
Coefficients:
1 2 3 4 5 6 7 8
0.21 0.01 0.00 0.07 0.11 0.05 -0.02 -0.03

arima(x = GX, order = c(6, 2, 2))
Coefficients:
ar1 ar2 ar3 ar4 ar5 ar6 ma1 ma2
0.12 -0.13 -0.13 0.01 0.09 0.03 -1.93 0.93
Coeff s.e. = 0.004 σ2 = 102 log L = -244446.5
AIC = 488911.1



Although the scatter is reduced by a factor of 30, the chosen model is

not adequate: Ljung-Box test shows significant correlation in the

residuals. Use AIC for model selection.



Fast Fourier Transform of the GX 5-1 time series reveals the
‘red noise’ (high spectral amplitude at small frequencies), the
QPO (broadened spectral peak around 0.35), and white noise.

f = 0:32768/65536
I = (4/65536)*abs(fft(gx)/sqrt(65536))ˆ 2
plot(f[2:60000],I[2:60000],type=”l”,xlab=”Frequency”)



Smoothed and tapered Fourier spectrum
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Smoothed Periodogram

bandwidth = 7.54e−05

postscript(file=”/̃Desktop/GX sm tap fft.eps”)
k = kernel(”modified.daniell”, c(7,7))
spec = spectrum(gx, k, method=”pgram”, taper=0.3, fast=TRUE, detrend=TRUE, log=”no”)
dev.off()



Spectral analysis

For challenging problems, smoothing, multitapering, linear
filtering, (repeated) pre-whitening and Lomb-Scargle can be
used together. Beware that aperiodic but autoregressive
processes produce peaks in the spectral densities. Harmonic
analysis is a complicated ‘art’ rather than a straightforward
‘procedure’.

It is extremely difficult to derive the significance of a weak
periodicity from harmonic analysis. Do not believe analytical
estimates (e.g. exponential probability), as they rarely apply to
real data. It is essential to make simulations, typically
permuting or bootstrapping the data keeping the observing
times fixed. Simulations of the final model with the
observation times is also advised.



State space models

Often we cannot directly detect xt, the system variable, but
rather indirectly with an observed variable yt. This commonly
occurs in astronomy where y is observed with measurement
error (errors-in-variable or EIV model). For AR(1) and errors
vt = N(µ, σ) and wt = N(ν, τ),

yt = Axt + vt xt = φ1xt−1 + wt

This is a state space model where the goal is to estimate xt
from yt, p(xt|yt, . . . , y1). Parameters are estimated by
maximum likelihood, Bayesian estimation, Kalman filtering, or
prediction. Extended state space models: non-stationarity,
hidden Markov chains, etc. MCMC evaluation of nonlinear and
non-normal (e.g. Poisson) models



Important Fourier Functions

Discrete Fourier Transform

d(ωj) = n−1/2

n
∑

t=1

xtexp(−2πitωj)

d(ωj) = n−1/2

n
∑

t=1

xtcos(2πiωjt)− in−1/2

n
∑

t=1

xtsin(2πiωjt)

Classical (Schuster) Periodogram

I(ωj) = |d(ωj)|
2

Spectral Density

f(ω) =
h=∞
∑

h=−∞

exp(−2πiωh)γ(h)



Fourier analysis reveals nothing of the evolution in time, but
rather reveals the variance of the signal at different
frequencies.

It can be proved that the classical periodogram is an estimator
of the spectral density, the Fourier transform of the
autocovariance function.

Fourier analysis has restrictive assumptions: an infinitely long
dataset of equally-spaced observations; homoscedastic
Gaussian noise with purely periodic signals; sinusoidal shape

Formally, the probability of a periodic signal in Gaussian noise
is P ∝ ed(ωj )/σ2

. But this formula is often not applicable, and
probabilities are difficult to infer.



Ginga observations of X-ray binary GX 5-1

GX 5-1 is a binary star system with gas from a normal companion

accreting onto a neutron star. Highly variable X-rays are produced in the

inner accretion disk. XRB time series often show ‘red noise’ and

‘quasi-periodic oscillations’, probably from inhomogeneities in the disk.

We plot below the first 5000 of 65,536 count rates from Ginga satellite

observations during the 1980s.

gx=scan(”/̃Desktop/CASt/SumSch/TSA/GX.dat”)
t=1:5000
plot(t,gx[1:5000],pch=20)



Fast Fourier Transform of the GX 5-1 time series reveals the
‘red noise’ (high spectral amplitude at small frequencies), the
QPO (broadened spectral peak around 0.35), and white noise.

f = 0:32768/65536
I = (4/65536)*abs(fft(gx)/sqrt(65536))ˆ 2
plot(f[2:60000],I[2:60000],type=”l”,xlab=”Frequency”)



Limitations of the spectral density

But the classical periodogram is not a good estimator! E.g. it is
formally ‘inconsistent’ because the number of parameters grows
with the number of datapoints. The discrete Fourier transform and
its probabilities also depends on several strong assumptions which
are rarely achieved in real astronomical data: evenly spaced data of
infinite duration with a high sampling rate (Nyquist frequency),
Gaussian noise, single frequency periodicity with sinusoidal shape
and stationary behavior. Formal statement of strict stationarity:
P{xt1 ≤ c1, ...sxK

≤ ck} = P{xt1+h
≤ c+ 1, ..., xtk+h

≤ ck}.

Each of these constraints is violated in various astronomical

problems. Data spacing may be affected by daily/monthly/orbital

cycles. Period may be comparable to the sampling time. Noise

may be Poissonian or quasi-Gaussian with heavy tails. Several

periods may be present (e.g. helioseismology). Shape may be

non-sinusoidal (e.g. elliptical orbits, eclipses). Periods may not be

constant (e.g. QPOs in an accretion disk).



Improving the spectral density I

The estimator can be improved with smoothing,

f̂(ωj) =
1

2m1

m
∑

k=−m

I(ωj−k).

This reduces variance but introduces bias. It is not obvious how to
choose the smoothing bandwidth m or the smoothing function
(e.g. Daniell or boxcar kernel).
Tapering reduces the signal amplitude at the ends of the dataset
to alleviate the bias due to leakage between frequencies in the
spectral density produced by the finite length of the dataset.
Consider for example the cosine taper

ht = 0.5[1 + cos(2π(t − t̄)/n)]

applied as a weight to the initial and terminal n datapoints. The

Fourier transform of the taper function is known as the spectral

window. Other widely used options include the Fejer and Parzen

windows and multitapering. Tapering decreases bias but increases

variance in the spectral estimator.
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Smoothed Periodogram

bandwidth = 7.54e−05

postscript(file=”/̃Desktop/GX sm tap fft.eps”)
k = kernel(”modified.daniell”, c(7,7))
spec = spectrum(gx, k, method=”pgram”, taper=0.3, fast=TRUE, detrend=TRUE, log=”no”)
dev.off()



Improving the spectral density II

Pre-whitening is another bias reduction technique based on
removing (filtering) strong signals from the dataset. It is widely
used in radio astronomy imaging where it is known as the CLEAN
algorithm, and has been adapted to astronomical time series
(Roberts et al. 1987).

A variety of linear filters can be applied to the time domain data

prior to spectral analysis. When aperiodic long-term trends are

present, they can be removed by spline fitting (high-pass filter). A

kernel smoother, such as the moving average, will reduce the

high-frequency noise (low-pass filter). Use of a parametric

autoregressive model instead of a nonparametric smoother allows

likelihood-based model selection (e.g. BIC).



Improving the spectral density III

Harmonic analysis of unevenly spaced data is problematic due to
the loss of information and increase in aliasing.

The Lomb-Scargle periodogram is widely used in astronomy to
alleviate aliasing from unevenly spaced:

dLS(ω) =
1

2

(

[
∑n

t=1 xtcosω(xt − τ)]2
∑n

i=1 cos
2ω(xt − τ)

+
[
∑n

t=1 xtsinω(xt − τ)]2
∑n

i=1 sin
2ω(xt − τ)

)

where tan(2ωτ) = (
∑n

i=1 sin2ωxt)(
∑n

i=1 cos2ωxt)
−1

dLS reduces to the classical periodogram d for evenly-spaced data.

Bretthorst (2003) demonstrates that the Lomb-Scargle

periodogram is the unique sufficient statistic for a single stationary

sinusoidal signal in Gaussian noise based on Bayes theorem

assuming simple priors.



Astronomers’ methods for periodicity searching

Several non-Fourier periodograms have been developed by
astronomers confronting unevenly sampled data. Most are
nonparametric, without assumption of a sinusoidal shape to
the periodic variation, particularly adapted to eclipses or other
short-duty cycle variations.



Data are folded modulo many periods, grouped into phase
bins, and intra-bin variance is compared to inter-bin variance
using χ2 (Stellingwerf 1972). Very widely used in variable star
research, although there is difficulty in deciding which periods
to search.



Minimum string length

by Dworetsky 1983. Similar to PDM but simpler: plots length
of string connecting datapoints for each period. Related to the
Durbin-Watson roughness statistic in econometrics.



Other methods

Rayleigh and Z2
n tests (Leahy et al. 1983) for periodicity

search Poisson distributed photon arrival events. Equivalent to
Fourier spectrum at high count rates.

Bayesian periodicity search (Gregory & Loredo 1992)
Designed for non-sinusoidal periodic shapes observed with
Poisson events. Calculates odds ratio for periodic over
constant model and most probable shape.



Conclusions on spectral analysis

For challenging problems, smoothing, multitapering, linear
filtering, (repeated) pre-whitening and Lomb-Scargle can be
used together. Beware that aperiodic but autoregressive
processes produce peaks in the spectral densities. Harmonic
analysis is a complicated ‘art’ rather than a straightforward
‘procedure’.

It is extremely difficult to derive the significance of a weak
periodicity from harmonic analysis. Do not believe analytical
estimates (e.g. exponential probability), as they rarely apply to
real data. It is essential to make simulations, typically
permuting or bootstrapping the data keeping the observing
times fixed. Simulations of the final model with the
observation times is also advised.

ANOVA; LARS & Lasso



Wavelet analysis

Non-stationary periodic behaviors can be studied using
time-frequency Fourier analysis. Here the spectral density
is calculated in time bins and displayed in a 3-dimensional plot.

Wavelets are now well-developed for non-stationary time
series, either periodic or aperiodic. Here the data are
transformed using a family of non-sinusoidal orthogonal basis
functions with flexibility both in amplitude and temporal scale.
The resulting wavelet decomposition is a 3-dimensional plot
showing the amplitude of the signal at each scale at each
time. Wavelet analysis is often very useful for noise
threshholding and low-pass filtering.



Bayesian Blocks

Bayesian Blocks constructs a segmented piecewise-constant
(histogram) model for event, integer (binned), or real
measurements as a function of time (Scargle 1998, Scargle et
al. 2013). An example of change point analysis where both
the number and location of change points is unknown. Very
useful in X-ray and gamma-ray astronomy.



For event data, the likelihood for the k-th block with N (k)

point and duration T (K) is

lnL(k) = N (k)lnN (k)/T (k) −N (k).

For binned (real) data, a Poisson (normal) likelihood is chosen.
Choose a convenient geometric prior on number of blocks Nbl,
discouraging fragmenting the time series into many little
blocks:

P (Nbl =
1− γ

1− γN+1γNbl

where N=number of events and γ is a user-chosen smoothing
parameter. The optimization algorithm O(N2), an example of
dynamic programming. Bootstrap error analysis is applied.



For the normal case with heteroscedastically weighted
observations, xi and σi, the MLE intensity of each block is the
weighted mean and the MLE for each bin is found,

lnL(k)
max = bk/4ak where ak =

1

2

nk
∑

i=1

1

σ2
i

and bk = −

nk
∑

i=1

x2
i

σ2
i

Figure: Histogram (right) and Bayesian Blocks (left)
representation of a gamma-ray burst.



Figure: Bootstrap confidence intervals for burst region. (Scargle et
al. 2013)
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