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Star counts: The first flux limited surveys

For a uniform population of objects 
distributed randomly in transparent
space:

S = L / 4 p D2

V = 4/3 p D3

N ~ V ~ S-3/2

William Herschel (1785) used deviations from this prediction to 
infer that the Universe (now known as our Milky Way Galaxy) is 
limited in extent (~1 kpc) and is elongated in shape.



Star counts at different Galactic latitudes

disk

halo

Bahcall & Soneira 1980    The universe at faint magnitudes. I - Models for the galaxy 
and the predicted star counts

The Galaxy has multiple components with different spatial distributions
producing strong deviations from the logN~-1.5 logS law.



But, near the Galactic plane, space is very opaque due to 
interstellar dust (Trumpler 1930).  Thus, Herschel�s galaxy is ~20 
times too small.

Big effort in 1910-50s to address the �Fundamental equation of 
stellar statistics� to simultaneously establish the distribution of 
stellar luminosities and their spatial distribution in the Galactic 
disk.  This effort essentially failed in the disk due to the patchy 
absorption, but functions reasonably well towards the Galactic 
poles (b=90o).  It is described in the monograph �Statistical 
Astronomy� (Trumpler & Weaver 1953).



Selection bias in flux-limited surveys

Astronomers often struggle to detect faint characteristics of celestial 
populations and fail.  Many surveys are flux-limited (F=L/4pd2), and are 
limited to detecting the closer and/or more luminous members of a 
population.  This leads to biased samples: at large distances, high-
luminosity objects are over-represented (e.g., the majority of V<2 stars 
are giants and supergiants).  Two types of bias in flux-limited surveys:

1.A `blind' astronomical survey of a portion of the sky is thus truncated at 
the sensitivity limit, where truncation indicates that the undetected 
objects, even the number of undetected objects, are entirely missing from 
the dataset.

1.In a `supervised’ astronomical survey where a particular property (e.g., 
IR emission with Herschel,  HCO+ line emission with ALMA, redshifted 
Lya emission with HETDEX) of a previously defined sample of objects is 
sought, some objects in the sample may be too faint to detect. This gives 
upper limits or left-censored datapoints.



Statistical challenges of censoring & truncation

In a truncated or censored sample, neither the same mean nor the 
median converge to the population values.  

The sample distribution (e.g. a Pareto luminosity function N(L) ~ L-a) 
will not converge to the population distribution because faint objects 
are underrepresented.  

Relationships among variables (e.g. Lopt ~ Lradio
-a) may be less 

affected, but sample correlations will be biased unless nondetections 
are adequately treated.

The situation is much better for censored samples
than for truncated samples,  

as the number and censored values of 
undetected objects are known … 



Survival analysis
A large field of applied statistics called survival analysis developed 

during 1950-80s to treat right-censoring in several applications:

1. Life insurance To calculate annuities, Edmund Halley (1692)  

constructed `life tables� from birth/death records in a city.  But some 

people leave the city; this leads to right-censoring in their survival time. 

(Need: Univariate distribution function)

2. Industrial reliability A company manufactures Widget Mark IV.  To find 

improvement over Mark III, operate 100 widgets until 20% fail.  From 

failure times, compare lifetime distributions. (Need: 2-sample test)

3. Biometrics  Dangerous Tobacco Co. wants to test the effect of smoking 

on cancer rates.  To compare longevities, 100 rats are given smoke at 0-

5  cigarette packs/day.  After 1 year, the experiment is stopped but some 

rats are still alive with right-censored survivals.  (Need: Regression) 

4. Astronomy The VLA seeks 21cm hydrogen line emission from starburst 

galaxies.  Due to low star formation rate and/or large distance, half are 

not detected.  Compare to LINERs and infrared dust emission.  (Need: 

distribution function, 2-sample test, regression)



Concepts of survival analysis

Censoring: The sample is known and all objects are observed, but 
some are undetected in the desired property. They can be displayed 
on graphs with `arrows’ rather than `points’.  Synonyms: Upper 
limits = Nondetections = Left censoring.  Lower limits = right 
censoring. 

Truncation: An unknown number of objects are missing from the 
sample due to nondetection.  They cannot be displayed on graphs.

Survival and hazard functions: Univariate functions closely 
related to the e.d.f. and p.d.f. widely used in survival analysis. 

Proportional hazard model and Cox regression: A 
mathematically convenient form of the dependence of the hazard 
function on uncensored variables.  



Statistical foundations of survival analysis

The survival function S(x) gives the probability that an object has 
a value of X above a specified value x (the inverse of the e.d.f.):

The hazard rate gives the probability that an object will have a specified value x:

(Note the p.d.f. is the product of the survival function and hazard rate.)

Example: Pareto distribution



Kaplan-Meier estimator

For a randomly censored univariate X, the Kaplan-Meier estimator is the unique 
unbiased nonparametric maximum likelihood estimator of the survival function is 

where di is the number of occurrences at xi (di=1 if no ties are present) 
and Ni is the number of `at risk� objects left in the sample.  An intuitive 
procedure: construct the e.d.f. of detected points, but increase the step 
size at low values by redistributing the upper limits to the left.    

The Kaplan-Meier estimator is asymptotically normal with variance

Kaplan, E. L.; Meier, P.: Nonparametric estimation from incomplete observations.         
J. Amer. Statist. Assn. 53:457–481, 1958.

Greenwood, M. The natural duration of cancer. Rpt Public Health (London) 33:1, 1926 



Example of univariate survival analysis (Kaplan-Meier)
Redistribute-to-the-right algorithm (Efron)

Feigelson & Nelson 1986



Two-sample tests, correlation & regression

Several generalizations of 1930s nonparametric 2-sample tests (e.g. Wilcoxon) 
were developed in 1960-70s that treat censored values in reasonable fashions:

Gehan, logrank, Peto-Peto, Peto-Prentice tests

Generalized Kendall’s tau correlation coefficients developed in 1970-90s.

Linear regressions developed during 1970-80s:

• Maximum likelihood line assuming Gaussian residuals (using EM Algorithm)

• Buckley-James line assuming nonparametric KM residuals

• Cox regression for multivariate independent variables

• Akritas-Thiel-Sen semi-parametric line



An example of astronomical censored data

Heckman et al. 1989 A millimeter-wave survey of CO emission in Seyfert galaxies



Gehan�s survival 2-sample hypothesis test
What is the chance that two censored datasets do not arise from
the same underlying distribution? H0 : S1(x) = S2(x)



Bivariate correlation for censored data
Consider a nonparametric hypothesis test for correlation. Helsel
proposes a generalizing Kendall's  coefficient based on pairwise
comparison of data points, (xi, yi)-(xj, yj ).

where nc is the number of pairs with a positive slope in the (x, y)
diagram, nd is the number of pairs with negative slopes, nt;x and
nt;y are the number of ties or indeterminate relationships in x and
y respectively. 

As the censoring fraction increases, fewer points contribute       
to the numerator of tH, but the denominator measuring the 
number of effective pairs in the sample also decreases. So      
tH depends on the detailed locations of the censored points.

Helsel, D. R. Nondetects and Data Analysis: Statistics for Censored 
Environmental Data, 2005



Linear regression: Several approaches



Test of bivariate correlation/regression for
simulated flux-limited surveys

Unbiased Buckley-James line
including nondetections

Biased line using
detections only

Isobe, Feigelson & Nelson 1986



Likelihoods can be constructed for censored and truncated samples:

Parametric modeling of censored data

In some cases, the likelihood can be written in closed form.

With the likelihood, the full capabilities of MLE and Bayesian inference 
are available:  parameter estimation with confidence intervals; model 
selection with penalized likelihoods; marginalization over uninteresting 
variables; etc.  

This approach is not often used in astronomy.  



Software for survival calculations

But we now encourage use of R/CRAN 
rather than the old ASURV !!



Truncation in astronomical surveys: 
The case of the galaxy luminosity function



Low lum

High lum

Volume-limited survey of 28K SDSS galaxies with d<150 Mpc 

Blanton et al. 2005 The Properties and Luminosity Function of 
Extremely Low Luminosity Galaxies 



Normal galaxy luminosity function

Parametric model:
Schechter function
related to gamma distribution

dN/dL  ~ F ~ L-a e-L/L*

Note that the Schechter function is
just the gamma distribution intro-
duced by Pearson (1901) based on 
the gamma function of Euler &
Lagrange.

Nonparametric methods:
two used here (1/Vmax, 
stepwise max. likelihood)

(Many technical issues concerning correction for missing low-surface 
brightness galaxies, K-correction and evolution-corrections to
luminosity, double Schechter fits, etc.)



Nonparametric estimators to LFs

1. Classic estimator:  
F(L) = N(L) / V   

where N is the number of stars/galaxies/AGNs in surveyed volume 
V.  A biased estimator.

2. Schmidt estimator (~40 citations/yr): 
F(L) = S 1 / Vmax(Li)

where Vmax is the maximum volume within which an object of the 
observed flux could have been seen given the survey�s sensitivity 
limit. Unbiased estimator but with high variance.  This is typically 
calculated in arbitrary luminosity bins.  

Schmidt 1968  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources
Felten 1976 On Schmidt's Vm estimator and other estimators of luminosity function



Stepwise maximum-likelihood estimator (~10 citations/yr):

Efstathiou et al. 1988 Analysis of a complete galaxy redshift survey. 
II - The field-galaxy luminosity function

where

Set dL/df = 0 to obtain



Lynden-Bell-Woodroofe MLE  (~6 citations/yr):

Recursion relation:

where Ck is the number of
stars/galaxies/AGNs in the
k-th rectangle in the 
luminosity-distance diagram

Lynden-Bell, A method of allowing for known observational selection in small 
samples applied to 3CR quasars, MNRAS 1971
Woodroofe, Estimation of a distribution function with truncated data, Annals Stat 1985



Takeuchi et al. (2000) apply these luminosity function estimators to  
simulations of small galaxy catalogs (N=100 and 1000).  All perform 
well when spatial distribution is homogeneous.  But for spatially 
clustered distributions, the 1/Vmax estimator is badly affected.  

There has been no analytical evaluation of the mathematical 
properties of these estimators since study of 1/Vmax by Felten (1976). 

The Lynden-Bell-Woodroofe estimator for randomly truncated 
univariate data is mathematically the best choice: unbiased, unbinned, 
nonparametric maximum likelihood, asymptotically normal.  

It is the analog of the Kaplan-Meier estimator for randomly censored 
univariate data.  



Open circles:  Known stellar LF from 
volume-limited sample

Black circles with green confidence bands:
Lynden-Bell-Woodroofe estimator

Red histogram:  Schmidt’s 1/Vmax estimator

computed with CRAN package DTDA

Data: (L, Lmin) for 3,307 Hipparcos stars 
with V<10.5 and parallactic distance < 75 pc 
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