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Transiting exoplanets

● Basic theory
● Planet parameters
● Host parameters
● Difficulties (noise, false positives)
● Synergy with radial velocity surveys
● Transiting planet demography
● Exomoon detection
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Transits
An intuitive detection method

NASA Stereo B view of a lunar eclipse
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Transit geometry

Figure adapted from 
Winn (2009)
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Transit probability

Consider the fraction of the planet's sky swept by its shadow as it orbits its host
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Transit probability

Transit probability is P, where

But

so

Allowing for finite planet size:
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Transit probability

planethost

(shadow region)

(radius R
*
)        (radius R

p
)

Transit probability for Earth around 
Sun to a randomly located celestial 
observer is 0.5%

Largest probability is for Jupiter 
(~1%), despite being 5 times 
further from Sun.

⇒ technique is biased towards 
close in and large planets (hot 
Jupiters)
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Transit depth
For a planet with host separation a and orbit inclination i, producing 
a sky-projected closest approach distance z = a cos i between the 
planet and host, the requirement to observe any transit is that

Minimum flux determined by the maximum fraction of the host's 
area covered by the planet:

Figure adapted from 
Winn (2009)
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Transit depth

Grazing                            Full
transit                          transit

Observed depth also depends on 
inclination angle of the planet orbit.
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Ingress and egress

Adapted from Seager & 
Mallen-Ornelas (2003)
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Transit lightcurve

Mandel & Agol (2002) state without proof the analytic formula 
for a transit lightcurve due to a planet passing in front of a 
uniform source (no limb darkening):

Let’s prove it!
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Transit lightcurve

grazing transit

3 out of the 4 regimes are trivial. Let’s cover the non-trivial 
one:
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Transit lightcurve

Flux determined by overlap region:
Intersection area of 2 circles

grazing transit
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Transit lightcurve

Let (x,y) origin be at centre of 
host. y points upwards.

All distances are in units of host 
radius (so host radius is unity)

Position of planet centre is (z,0)

Chord of intersection between 
host and planet has length 2y. 
Position of centre of chord is 
(x,0) and the top is (x,y).

Distance between chord and 
planet along x-axis is z-x  
(ie -ve when planet centre is to 
the left of chord, as in Figure)

Planet radius is p.

Unit 
radius
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Transit lightcurve

Unit 
radius

Equations of the host and planet  
circles, evaluated at the top of the 
chord, share common (x,y):

Solve for x then use top equation to solve for y:
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Transit lightcurve

Unit 
radius

A

B

C

Overlap area is the sum of two 
lens-shaped areas:

● The (thin) area of the host 
lying to the right of the chord 
(A

H
)

● The area of the planet lying to 
the left of the chord (A

P
)

A
H
 is the difference in areas 

between the host area within 
circular wedge ABC and the 
triangle ABC

Similar exercise for A
p
 using  z-x in 

place of x:
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Transit lightcurve

Writing F
*
 as the host flux in units of its baseline (out-of-transit) flux, the 

transit flux can be written as

Substituting in the formulae for x and y leads to the Mandel & Agol (2002) 
result: 
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Transit lightcurve
D

e
p
th

Normalised host radius crossing time

Increasing 
planet radius

Dependence on planet radius
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Transit lightcurve
D

e
p
th

Normalised host radius crossing time

Grazing 
transit

Full 
transit

Dependence orbit inclination
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Transit lightcurve
D

e
p
th

Normalised host radius crossing time

Grazing 
transit

Full 
transit

D
e
p
th

Normalised host radius crossing time

Increasing 
planet radius

● For a uniform source transit inclination and depth 
are easy to decouple with reasonable data 
coverage.

● In optical bands hosts show limb-darkening: radially 
decreasing brightness

● Mandel & Agol (2002) also provide analytic 
formulae for common limb-darkening models:
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Transit parameters

– Basic transit photometry provides:

● Radius of the planet in units of the host radius.
● The orbital period P
● The inclination angle i
● The eccentricity e may sometimes be constrained 

– But:

● Basic transit photometry alone cannot determine the planet mass 
(only the size)! 
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Transit parameters
– Additional parameters (Seager & Mallen-Ornelas 2003) in the case of 

circular or near-circular orbits: 

– application of a host mass-radius relationship can allow R
*
 to be 

estimated from 〈ρ
*
〉, allowing R

p
 to be determined from the transit 

depth.

– Additional data from RV provides the planet mass M
p
 and therefore the 

planet average density 〈ρ
p
〉

– Limb darkening coefficients provide additional stellar physics 
constraints

(= inverse transit probability!)
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HD 209458b : first planet transit

Original transit lightcurve from the discovery paper of 
Charbonneau et al (1999)

Planet radius of 
1.35 R

Jup
 and 

orbital period of 
3.5 days.

A hot Jupiter 
orbiting a 1.1 M

⊙
 

star
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Transit duration
For a circular orbit in time Δt the 
planet sweeps an angle

The path half-length across the host 
disk is [using Eq (1)]

which gives

as the transit duration for R
p
 << R

*
 

(ie ignoring ingress/egress times).

φ

b

a

z
R

*

b
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Dependence of transit signal on 
exoplanet parameters

● We have seen that the transit signal depends on the radius of 
the planet. The radius is correlated with mass M

p
. For rocky 

(lower mass) planets we may expect a roughly characteristic 
planet density (for solar system rocky planets this is 4-5 g/cm3), 
in which case

● The precision of transit measurements, σ
T
, for a single transit is 

governed by detecting a difference in the number of photons ΔN 
received during transit and out of transit. Since the photon error 
is governed by Poisson statistics we have
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● The precision σ
T
 can be improved by observing multiple 

transits. For a fixed total observing time T and a planet 
with period P we can observe n = T/P transits. We can 
expect the precision to improve as

● At some point σ
T
 will be reduced down to the level of 

systematic errors imposed by the telescope, 
atmosphere, host star stability or data reduction 
technique. At this point  σ

T
 is fixed and so we can 

combine Eq (18) and (19) to see the trade off between 
exoplanet parameters

Dependence of transit signal on 
exoplanet parameters
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Dependence of transit signal on 
exoplanet parameters

Detectable planets

Undetectable 
planets

Period too 
long

log P

lo
g
 R

p
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Dependence of transit signal on 
exoplanet parameters

Mostly 
Kepler 
transits

Mostly 
ground-based 
transits

Kepler 
sensitivity is 
pretty much 
as expected
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Kepler

Source: kepler.nasa.gov

NASA space telescope which measured the brightness of 150,000 bright 
stars every 30 minutes. Sensitive to Earth-sized transits
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Tres-2b as observed by Kepler

From Kipping & Bakos (2011)

In this case another 
hot Jupiter

Kepler was capable of very precise photometry!

Fig 3.23
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Kepler

● Kepler has been a powerful 
observatory for exoplanet demography 
with sensitivity from sub-Earth sized 
planets upwards

● However, by focussing on a specific 
region, Kepler has to go deep to obtain 
large numbers of planets

● Many Kepler candidates are too faint to 
follow up from the ground, limiting the 
science potential of the Kepler dataset

● Ground-based surveys have tended to 
follow a wide and shallow strategy *eg 
SuperWASP) and this is now the 
stragety for current and future space-
based missions too (TESS, PLATO)
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TESS

Shallow, all-sky approach. Much more suitable for ground-based follow-up
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Ground-based: NGTS
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Complications

Seager & Mallen-Ornelas (2003)

The presence of an 
unresolved  background 
star can present a 
planet radius vs orbit 
inclination degeneracy 



Eamonn Kerins: Transiting exoplanets
39

Complications

Target 
star

Background 
eclipsing binary 
star system

Resolution limit of 
telescope (stars within this 
scale are unresolved from 
one another)

Fig 3.28

False positive signals can arise from unresolved distant eclipsing binary system 
contaminating the flux
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Complications

Intrinsic variability of the host star:

– long-term variability can be “de-trended” from the data by fitting for a 
general slope

– short-timescale periodic variability (e.g. star spots) can often be 
modelled as starspot periods are related to the stellar rotation rate

– short-term stochastic variability due to helioseismology sets a limit on 
the precision of transit detection. Surveys tend to pick “quieter” stellar 
types to minimize this
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Trappist-1

Gillon et al (2017)

A closely packed 
system of seven 
Earth-sized 
exoplanets orbiting 
low mass M dwarf 
star 12 pc away. 

All may potentially be 
able to host liquid 
water
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Trappist-1

Gillon et al (2017)

Radii measured from transits, masses from TTV (see later in the course)
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Trappist-1

Gillon et al (2017)

Mass and radius 
measurements means 
average internal density 
is known. 

Consistent with Earth-
like rocky planets
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Trappist-1

Gillon et al (2017)

Host is much lower 
luminosity than the Sun but 
these planets are 
correspondingly closer in 

Located at about the right 
region for liquid water to 
exist.

But we don't know whether 
it does on any of them.

Relatively nearby so 
amenable to atmospheric 
studies with HST/JWST/E-
ELT in future...
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Habitable zone planets

http://phl.upr.edu/
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Circum-binary planets

15 confirned stellar 
circumbinary planetary 
systems known to date.

Detected through 
transit, imaging and 
microlensing methods.

Shown are 8 candidates
from Kepler:
orange circles = primary star orbit
red circles = secondary star orbit
blue circles = planet orbits
(Winn & Fabrycky 2015)
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Transit planet demography

Demography landscape dominated by Kepler planets and hot Jupiters observed  from 
the ground
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Transit planet demography
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Transit planet demography



Eamonn Kerins: Transiting exoplanets
50

Transit planet demography

Assumes HZ temperature range equating to 0.75-1.7 AU for the Solar system
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Transit timing variation (TTV)

The periodicity of a transit can be affected by several factors, 
including:

● The gravitational influence of another planet, especially in the case 
of mean motion orbital resonance

● Planet or host star tidal effects

● Transit around a binary star system (circum-binary exoplanet)

● Precession of periapsis due to General Relativistic effects

● The presence of moons around the planet
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Orbital resonsance effects
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Fig 3.30
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Mean motion orbital resonance

Orbital resonance refers to where the orbital periods P
1
 and P

2
 of two 

bodies obey a simple small-integer relation

Solar system examples: 

● 3:2 orbital resonance between Neptune and Pluto

● Large orbital gaps in the main asteroid belt are associated with 
orbital resonances with Jupiter. 

● Gaps in the Saturnian ring system are linked with orbital 
resonances with some of its moons
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TTV signal from orbital resonance

A periodic variation in the transit ephemeris is predicted when a pair 
of planets have periods P

1
 and P

2
 which are close to (but not 

exactly) in a mean motion orbital resonance. Specifically, the TTV 
period is given by [c.f. Eq (21)]

Where |m-n| = N we say that the resonance is an Nth-order 
resonance.
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TTV due to orbital resonance
For transiting exoplanets, orbital resonances induce a periodic change in 
orbital speed which manifests as a modulation in the timing (ephemeris) of 
their transits.

NASA Kepler team movie illustrating TTV from a two-planet system exhibiting 
a 2:1 mean motion orbital resonance. Transit timing of the inner planet can be 
used to infer or confirm the presence of the outer planet, even if no transit is 
observed from it.

Fig 3.31
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Kepler-19c: TTV discovery

Ballard et al (2011)

Kepler timing of transiting exoplanet Kepler-19b reveals periodic 
variation due to a planet (Kepler-19c) with an orbit P < 160 days and 
mass M

p
 < 6 M

Jup
. No evidence of a transit by Kepler-19c was identified. 

The resonance between Kepler-19b and 19c is higher than first order.

3.2

Fig 3.32
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Exomoons

– Just as planets in our Solar System possess moons we shoud expect 
exoplanets to host exomoons

– Timing variations of planet transits offer one of the best ways to 
discover an exomoon.

– Two types of timing signal: 

● transit timing variation (TTV)
●  transit duration variation (TDV)

– Detection of both TTV and TDV signal can confirm the presence of an 
exomoon (Kipping 2009)
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TTV due to an exomoon

Time of 
mid-ingress
(no moon)

host star

ExoplanetExomoon

Time of 
mid-ingress
(no moon)

Time of 
mid-ingress
(no moon)

Early
ingress

Late
ingress

TTV signal can arise from the presence of an exomoon

The time of ingress is determined by the position of the exoplanet 
relative to the exoplanet-exomoon barycentre

Fig 3.33
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TDV due to an exomoon

Slower 
transit

Host star

Exoplanet

Exomoon

Faster 
transit

The duration of transit is modified by the orbit effect of the exomoon 
around the planet host

Fig 3.34
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Exomoons with TTV/TDV

TTV and TDV signals should be out of phase by π/2 if the exomoon 
and exoplanet orbits are coplanar. The combination of TTV and TDV 
signals exhibiting such a phase difference is basically the key 
signature needed to confirm an exomoon.

Time of 
mid-ingress
(no moon)

host star

ExoplanetExomoon

Time of 
mid-ingress
(no moon)

Time of 
mid-ingress
(no moon)

Early
ingress

Late
ingress

Slower 
transit

Host star

Exoplanet

Exomoon

Faster 
transit

TTV                                                                      TDV       
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TTV + TDV exomoon signals

TTV and TDV signals should exhibit a strong correlation for a 
genuine exomoon signal

Simulated TTV and TDV signals of an Earth-mass exomoon and Jupiter host planet 
orbiting in the habitable zone of an M-dwarf host star (Awiphan & Kerins 2013)

Fig 3.35
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Planet atmospheres
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Planet atmospheres
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