The Physics of Dark Matter Theory and Phenomenology

Patipan Uttayarat

TCAP Preworkshop, NARIT

Febuary 16, 2019

Patipan Uttayarat (Srinakharinwirot)

Outline

- 2 Dark Matter Candidates
- Oark Matter Phenomenology
- Example of Specific Dark Matter Model

5 Conclusion

What is Dark Matter?

Orbital Velocity: Warm Up

Apply this to a star orbiting a galaxy.

Orbital Velocity: Warm Up

Apply this to a star orbiting a galaxy.

Orbital Velocity: Real Galaxy

The Rotational Curve Resolutions

There are 2 options:

 Gravity behave differently at large distance. (Modified gravity)

 The galaxy must contains more mass than we can see. (Dark matter)

As you can guess from the title, we'll take option #2!

The Rotational Curve Resolutions

There are 2 options:

 Gravity behave differently at large distance. (Modified gravity)

 The galaxy must contains more mass than we can see. (Dark matter)

As you can guess from the title, we'll take option #2!

Why Dark Matter (I)?

Why Dark Matter (I)?

Why Dark Matter (II)?

- At the end of inflation, DM provided gravitational pull so that matter can clump.
- Simulation favors non-relativistic dark matter.

Dark Matter Could Potentially Explain a Long Standing Mystery!!!

Patipan Uttayarat (Srinakharinwirot)

Physics of DM

Febuary 16, 2019 7 / 33

What Kill Dinosaurs?

DM triggers periodic commet impacts [Randall & Reece '14] Image credit: NASA/JPL-Caltech

Patipan Uttayarat (Srinakharinwirot)

The Universe Today

Dark matter accounts for $\gtrsim 80\%$ of the mass of the universe.

Image credit: NASA/WMAP Science Team

Patipan Uttayarat (Srinakharinwirot)

Outline

2 Dark Matter Candidates

3 Dark Matter Phenomenology

Example of Specific Dark Matter Model

5 Conclusion

Properties of Dark Matter

- Massive (duh).
- Does not interact electromagnetically (electrically neutral particle).
- Stable.

Possible properties:

- Interact weakly with regular matters.
- Some could interact strongly among themselves.

Properties of Dark Matter

- Massive (duh).
- Does not interact electromagnetically (electrically neutral particle).
- Stable.

Possible properties:

- Interact weakly with regular matters.
- Some could interact strongly among themselves.

Regular Matters

Standard Model of Elementary Particles

Patipan Uttayarat (Srinakharinwirot)

Dark Matter = New Physics

Patipan Uttayarat (Srinakharinwirot)

Physics of DM

Febuary 16, 2019 11 / 33

Zoo of Dark Matter Candidates

A (well) motivated new physics scenario usually contains dark matter (incomplete list).

- Sterile neutrino \Leftrightarrow neutrino mass generation.
- Supersymmetric particle \Leftrightarrow the hierarchy problem.
- Axion \Leftrightarrow the strong CP problem.
- Kaluza-Klein particle \Leftrightarrow extra-dimension.
- Dark photon \Leftrightarrow the fifth force.
- . . .

We will not be worried about a specific scenario.

A Unified Approach

Working assumptions

- Stable particle.
 - Scalar (spin-0): Axion,
 - Fermion (spin-1/2): SUSY, KK,
 - Vector (spin-1): Dark photon,
- Interacts weakly (and non-gravitationally) with SM.
 - Typically involve 2 DM and 2 SM particles.

WIMP Paradigm.

We can probe their properties!

A Unified Approach

Working assumptions

- Stable particle.
 - Scalar (spin-0): Axion,
 - Fermion (spin-1/2): SUSY, KK,
 - Vector (spin-1): Dark photon,
- Interacts weakly (and non-gravitationally) with SM.
 - Typically involve 2 DM and 2 SM particles.

WIMP Paradigm.

We can probe their properties!

3

- Dark Matter Phenomenology
 - Direct Detection
 - Indirect Detection
 - Collider Search

Example of Specific Dark Matter Model

The Earth is being bombarded with DM

Cr: Corinne Mucha, Sandbox Studio Chicago

Patipan Uttayarat (Srinakharinwirot)

Sit and wait for DM to come interacts with the detector. Signal is buried in SM background!

 χ

- 2 Different Approaches:
 - Zero background
 - ▶ CDMS, LUX, XENON, ...
 - Absolute number of events.
 - Current status: negative.
 - Anual modulation
 - ▶ CRESST, COGENT, DAMA, ...
 - Relative number of events
 - Current status: positive.

$\mathsf{Data} \Longrightarrow \mathsf{DM}\text{-nucleon cross-section}$

Sit and wait for DM to come interacts with the detector. Signal is buried in SM background!

 χ

- 2 Different Approaches:
 - Zero background
 - CDMS, LUX, XENON, ...
 - Absolute number of events.
 - Current status: negative.
 - Anual modulation
 - ▶ CRESST, COGENT, DAMA, ...
 - Relative number of events.
 - Current status: positive.

$Data \implies DM$ -nucleon cross-section

Sit and wait for DM to come interacts with the detector. Signal is buried in SM background!

 χ

- 2 Different Approaches:
 - Zero background
 - CDMS, LUX, XENON, ...
 - Absolute number of events.
 - Current status: negative.
 - Anual modulation
 - ▶ CRESST, COGENT, DAMA, ...
 - Relative number of events.
 - Current status: positive.

$Data \implies DM$ -nucleon cross-section

Sit and wait for DM to come interacts with the detector. Signal is buried in SM background!

- 2 Different Approaches:
 - Zero background
 - CDMS, LUX, XENON, ...
 - Absolute number of events.
 - Current status: negative.
 - Anual modulation
 - ▶ CRESST, COGENT, DAMA, ...
 - Relative number of events.
 - Current status: positive.

 $Data \implies DM$ -nucleon cross-section

State of Direct Detection

Essence of Indirect Detection

Indirect Detection Experiment

 $\gamma,~e^{\pm}$ interact with the Earth's atmosphere, ν doesn't.

- Ground based telescopes:
 - Neutrino directly from DM annihilation: IceCUBE, Super(Hyper)K, KamLAND, etc.
 - γ from Cherenkov radiation: HESS, VERITAS, CTA etc.
- Space based telescopes:
 - γ : Fermi-LAT, DAMPE, etc.
 - e^{\pm} : PMELA, AMS, etc.

$Data \Longrightarrow DM$ annihilation cross-section

Indirect Detection Experiment

 γ , e^{\pm} interact with the Earth's atmosphere, ν doesn't.

- Ground based telescopes:
 - Neutrino directly from DM annihilation: IceCUBE, Super(Hyper)K, KamLAND, etc.
 - γ from Cherenkov radiation: HESS, VERITAS, CTA etc.
- Space based telescopes:
 - γ : Fermi-LAT, DAMPE, etc.
 - e^{\pm} : PMELA, AMS, etc.

$Data \Longrightarrow DM$ annihilation cross-section

Indirect Detection Result, γ -channel

Collider Search (naively)

Experimental procedures:

- Collide SM particles (pp, $p\bar{p}$, e^+e^-)
- Look for DM(s) that were created from the collision. Drawback?

• DM does not interact with detector!

Patipan Uttayarat (Srinakharinwirot)

Collider Search (naively)

Experimental procedures:

- Collide SM particles (pp, $p\bar{p}$, e^+e^-)
- Look for DM(s) that were created from the collision. Drawback?
 - DM does not interact with detector!

Patipan Uttayarat (Srinakharinwirot)

Collider Search (realistic)

Need SM in the final state for DM to recoils against.

- Still cannot detect DM.
- But now they appears as imbalanced (missing) momentum.
- Simplest case: 1 SM (photon, jet, lepton, ...) a.k.a *mono-X* search.

Patipan Uttayarat (Srinakharinwirot)

Collider Search (realistic)

Need SM in the final state for DM to recoils against.

- Still cannot detect DM.
- But now they appears as imbalanced (missing) momentum.
- Simplest case: 1 SM (photon, jet, lepton, ...) a.k.a mono-X search.

Patipan Uttayarat (Srinakharinwirot)

Ex: CMS Mono-Photon Result

Introduction

Dark Matter Phenomenology

Example of Specific Dark Matter Model

- Higgs Portal Dark Matter
- Simplified Model: DM-neutrino Interaction

Higgs Portal Dark Matter

Working assumptions:

- Only Higgs boson couples to DM.
- DM can be spin-0, spin-1/2 or spin-1.

$$\mathcal{L}_{\chi} = \begin{cases} g_{\chi} \chi^{\dagger} \chi H^{\dagger} H \,, & \text{scalar DM;} \\ \frac{g_{\chi} + i \tilde{g}_{\chi}}{\Lambda} \bar{\chi}_{L} \chi_{R} H^{\dagger} H + \text{h.c.}, & \text{fermion DM;} \\ \frac{g_{\chi}}{2} \chi^{\mu} \chi_{\mu} H^{\dagger} H, & \text{vector DM.} \end{cases}$$

Very predictive. DM phenomenology depends on DM–Higgs coupling, g_{χ} , and DM mass, m_{χ} .

Higgs Portal Dark Matter

Working assumptions:

- Only Higgs boson couples to DM.
- DM can be spin-0, spin-1/2 or spin-1.

$$\mathcal{L}_{\chi} = \begin{cases} g_{\chi} \chi^{\dagger} \chi H^{\dagger} H \,, & \text{scalar DM;} \\ \frac{g_{\chi} + i \tilde{g}_{\chi}}{\Lambda} \bar{\chi}_L \chi_R H^{\dagger} H + \text{h.c.}, & \text{fermion DM;} \\ \frac{g_{\chi}}{2} \chi^{\mu} \chi_{\mu} H^{\dagger} H, & \text{vector DM.} \end{cases}$$

Very predictive. DM phenomenology depends on DM–Higgs coupling, g_{χ} , and DM mass, m_{χ} .

Higgs Portal Phenomenology

 χ

Collider

Indirect Detection

26 / 33

Higgs Portal: Scalar DM

Higgs Portal: Fermionic DM

27 / 33

Patipan Uttayarat (Srinakharinwirot)

DM-neutrino Interactions

Working assumptions:

- DM interacts with a neutrino and a messenger.
- Other interactions of DM are negligible.
- DM can be a scalar or a fermion.

$$\mathcal{L}_{int} = \begin{cases} y \, \bar{\chi} P_L \nu \phi + \text{h.c.}, & \text{fermionic DM,} \\ y \, \bar{\psi} P_L \nu \chi + \text{h.c.}, & \text{scalar DM} \end{cases}$$

 $\chi = DM$, $\phi(\psi) =$ messenger. Slightly less predictive, phenomenology depends on 3 parameters: y, m_{χ} , $m_{\phi(\psi)}$.

Simplified Model: DM-neutrino Interaction

Phenomenologies

Collider

Scalar DM: Viable Parameter Space

Fermionic DM: Viable Parameter Space

Take Home Messages

- DM is a new particle (*new physics*). It interacts weakly with SM.
- Many well motivated scenarios of NP contain DM.
- In a particular scenario, we can learn quite a lot of DM properties.
- DM is interdisciplinary.
 - Astrophysics. (telescopes, DM profile, etc)
 - Particle physics. (models, detectors, etc)
 - Cosmology. (evolution of the universe, etc)

Omitted Topics

- How DM was generated.
 - Thermal relic
 - Freeze out vs. freeze in.
- DM distribution.
- Impacts of DM on the evolution of the Universe.
 - Large scale structure.
 - CMB spectrum.
 - Cosmic dawn (21 cm spectrum line).
- Strongly interacting DM.
- DM and the matter-antimatter asymmetry.
- DM stars.

Thank you for your attention.

Patipan Uttayarat (Srinakharinwirot)

Physics of DM

Febuary 16, 2019 33 / 33

Patipan Uttayarat (Srinakharinwirot)

Physics of DM

Febuary 16, 2019 33 / 33