

DARK MATTER MODELING IN A ACDM UNIVERSE

[relevant for gamma-ray dark matter searches]

Miguel A. Sánchez-Conde

Instituto de Física Teórica IFT UAM/CSIC & Departamento de Física Teórica Universidad Autónoma de Madrid

miguel.sanchezconde@uam.es

1st Thai-CTA workshop on Astroparticle Physics Chiangmai, Thailand, February 18-22 2019

Hands-on session on DM modeling

I prepared a couple exercises on DM modeling for you.

Please download the sheet of problems from:

https://tinyurl.com/yywzqcsc (and feel free to ask any questions)

2

0

The DM-induced gamma-ray flux

$$F(E_{\gamma} > E_{th}, \Psi_0) = J(\Psi_0) \times f_{PP}(E_{\gamma} > E_{th}) \quad \text{photons cm}$$

Astrophysics

Integration of the squared DM density

$$J(\Psi_0) = \frac{1}{4\pi} \int_{\Delta\Omega} d\Omega \int_{l.o.s.} \rho_{DM}^2 [r(\lambda)] d\lambda$$

Where to search?

- Galactic Center
- Dwarf spheroidal galaxies
- Local galaxy clusters
- Nearby galaxies...

Particle physics

N_g: number of photons per annihilation above E_{th} < σ v>: cross section m_{\chi}: neutralino mass

⁻² S⁻¹

The DM-induced gamma-ray flux

$$F(E_{\gamma} > E_{th}, \Psi_{0}) = J(\Psi_{0}) \times f_{PP}(E_{\gamma} > E_{th}) \text{ photons cm}^{2} \text{ s}^{1}$$

$$F_{THS} TALK \quad \textbf{Astrophysics} \quad \textbf{Particle physics} \quad \textbf{Someony} \quad$$

Annihilation spectra

- 1. Cut-off at the DM particle mass
- 2. Spectra of leptonic channels "harder" (i.e., "fall slower") than hadronic ones.

Charles, MASC+16, astro-ph/1605.02016

Annihilation spectra

- 1. Cut-off at the DM particle mass
- 2. Spectra of leptonic channels "harder" (i.e., "fall slower") than hadronic ones.

Charles, MASC+16, astro-ph/1605.02016

LCDM predictions crucial!

Typical J-factor values

Target	Distance (kpc)	J factor (GeV ² cm ⁻⁵)	Angular Extent (°)
Galactic center / halo $(\S4.4)$	8.5	3×10^{22} to 5×10^{23}	> 10
Known Milky Way satellites $(\S4.5)$	25 to 300	3×10^{17} to 3×10^{19}	< 0.5
Dark satellites $(\S4.6)$	up to 300	up to 3×10^{19}	< 0.5
Galaxy Clusters $(\S4.7)$	$> 5 \times 10^4$	up to 1×10^{18}	up to ~ 3
Cosmological DM $(\S4.8)$	$> 10^{6}$	-	Isotropic

Charles, MASC+16, astro-ph/1605.02016

J-factor computation: CLUMPY

0 CLUMPY: multi-purpose code for indirect DM detection modelling and analysis

- Code distribution and usage:
 - Open-source: reproducible and comparable *J*-factor calculations
 - User-friendly Sphinx documentation, lots of examples & tests to run
 - All runs from single parameter file or command line (profiles, concentration, spectra...)
- Fast computation of:
 - Annihilation or decay astrophysical factors using any DM profile
 - Boost from substructures and its uncertainty
 - Integrated/differential fluxes in y-rays and neutrinos, mixing user-defined branching ratios
- Four main modules / physics cases:
 - I. DM emission from list of objects (dSph galaxies, galaxy clusters)
 - II. Full-sky map mode for Galactic DM emission with substructure + additional objects from list
 - III. Jeans module: full analysis from kinematic data to *J*-factors for dSph
 - IV. Full-sky map mode for extragalactic DM emission

Growing use in the community for state-of-the-art DM studies for many targets (dSphs, cluster, dark clumps...) and by various collaborations (MAGIC, CTA, HAWC) Download from https://lpsc.in2p3.fr/clumpy/

From the astrophysics point of view, it's all about the J-factor.

Observational uncertainties are large and typically prevent a precise J-factor determination.

We can use ACDM cosmological simulations to shed light on J-factor values

N-body cosmological simulations

- Great theoretical advances in cosmic structure and galaxy formation in the last 40 years.
 (e.g. Spherical Collapse + Press-Schechter formalism)
- BUT... Structure formation highly non-linear process
 N-body simulations needed

Some applications...

- ✓ Large Scale Structure studies.
- ✓ Internal structure of CDM halos.
- ✓ Substructures.
- ✓ Galaxy formation and evolution.
- ✓ Strong/weak lensing
- ✓ Near-field cosmology
- ✓ Streams.
- ✓ Dark matter detection.

Zoom sequence from 100 to 0.5 Mpc/h Millenium-II simulation (Boylan-Kolchin+09)

CMB is a snapshot of primordial density fluctuations in matter at z=1000. These fluctuations later collapse under gravity to form structures in the Universe.

Bolshoi-Planck Cosmological Simulation Anatoly Klypin & Joel Primack NASA Ames Research Center 8.6x10⁹ particles I kpc resolution

DARK MATTER HALOS

- Basics:
 - Collapsed structures.
 - Self-bound.
 - "Virialized" (i.e. in equilibrium) \rightarrow Virial radius and mass, R_{vir} and M_{vir} .
- Halos are the basic building blocks of Large Scale Structure.
 - Galaxies also reside in them.
- Halos come from peaks in the initial density field
 - \rightarrow theoretical study of initial peaks' properties
 - \rightarrow final halo properties (density profiles, abundance, clustering...)
 - \rightarrow starting point for semi-analytical models, e.g. Spherical Collapse.
 - \rightarrow complicated.
 - \rightarrow N-body simulations.

0

luminous matter

The structure of Cold Dark Matter halos

Structure of the Coma cluster N_p = 300

Structure of DM halos N_p= 32000/250000

GHALO Milky Way N_p= 2·10⁹

Stadel et al. 2009

Dubinski & Carlberg 1991

The structure of CDM halos

Virialized DM halos of all masses seem to exhibit a nearly universal DM density profile, e.g. Einasto or NFW.

$$\rho(r) = \frac{\rho_0}{(r / r_s)(1 + r / r_s)^2}$$

Navarro-Frenk-White (1996) [NFW]

Parameters: $(\rho_o, r_s) \text{ or } (c_{vir}, M_{vir}) \text{ or } (v_{max}, r_{max})$ **Concentration** $c_{vir} = R_{vir} / r_s$

DM-only simulations predict cusps with log slopes of -1 in the center of DM halos

The origin of these profiles is not well understood.

Phoenix + Aquarius simulations [Frenk & White 2012]

CDM halo concentrations

Concentration $c = R_{vir} / r_s$

Describes the structural halo properties.

c scales with mass and redshift (e.g., Bullock+01,Zhao+03,08; Maccio+08,Gao+08, Prada+12)

Related to the formation time of the halo

Different c(M) models

Prada+12

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

MASC & Prada, MNRAS, 442, 2271 (2014) [astro-ph/1312.1729]

CDM HALO SUBSTRUCTURE

GHALO simulation [Stadel+09]

luminous matter

Unobserved satellites

Milky Way virial radius

GHALO simulation [Stadel+og]

DM annihilation signal is proportional to the DM density squared
 → Enhancement of the DM annihilation signal expected due to subhalos.

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \left[1 + B(m)\right] L(m) \ dm$$

DM annihilation signal is proportional to the DM density squared
 → Enhancement of the DM annihilation signal expected due to subhalos.

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) [1 + B(m)] L(m) dm$$

Subhalo mass function

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Subhalo boost model

- 1. Make use of our better knowledge on subhalo concentrations.
- 2. Tidal stripping included (Roche criterium).

[Agrees also with Bartels & Ando (2015) and Zavala & Afshordi (2015)]

Substructure modifies the annihilation flux profile

[MASC, Cannoni, Zandanel et al., JCAP 12 (2011) 011]

Annihilation signal becomes *more spatially extended*.

Hands-on session on DM modeling

I prepared a couple exercises on DM modeling for you.

Please download the sheet of problems from:

https://tinyurl.com/yywzqcsc (and feel free to ask any questions)

0

Thanks!

Miguel A. Sánchez-Conde

miguel.sanchezconde@uam.es www.miguelsanchezconde.com

Daniel López / IAC