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Hands-on	session		
on	DM	modeling	

I	prepared	a	couple	exercises	on	DM	modeling	for	you.	
	
Please	download	the	sheet	of	problems	from:	
	

https://tinyurl.com/yywzqcsc	
(and	feel	free	to	ask	any	questions)	
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F(Eγ > Eth,Ψ0 ) = J(Ψ0 )× fPP Eγ > Eth( ) photons cm-2 s-1  
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The	DM-induced	gamma-ray	flux	

Astrophysics 

J(Ψ0 ) =
1
4π

dΩ
ΔΩ

∫ ρDM
2 [r(λ)]dλ

l.o.s.∫

Where to search? 
	

•  Galactic	Center	
•  Dwarf	spheroidal	galaxies		
•  Local	galaxy	clusters	
•  Nearby	galaxies...	

Particle physics 

fPP∝
dN f

γ

dEγf
∑ Bf

σ ⋅ v
mχ

2

Ng	:	number	of	photons	
per	annihilation	
above	Eth	

<σ v>:	cross	section	
mχ:	neutralino	mass	
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Annihilation	spectra	
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Figure 1: The density as a function of Galactocentric radius (left) and the integrated J factor as a function of angular separation
from the Galactic center for several widely considered radial profiles of the DM halo of the Milky Way.
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Figure 2: Spectra, dN�/dE� , of prompt � rays per DM pair annihilation for di↵erent annihilation channels and DM masses.
(Upper left) Annihilation spectra of 200 GeV DM into various annihilation channels. Annihilation spectra into bb̄ (upper right),
⌧+⌧� (lower left), and W+W� (lower right) for a range of DM masses. See Ref. [40] and App. B for details of the calculation
of these spectra. These spectra do not include secondary emission of � rays, which will enhance the emission at lower energies
in the leptonic channels and can be important in dense environments.

6

Charles,	MASC+16,	astro-ph/1605.02016	

1.  Cut-off	at	the	DM	particle	mass	
2.  Spectra	of	leptonic	channels	“harder”	(i.e.,	“fall	slower”)	than	hadronic	ones.		
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Figure 2: Spectra, dN�/dE� , of prompt � rays per DM pair annihilation for di↵erent annihilation channels and DM masses.
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⌧+⌧� (lower left), and W+W� (lower right) for a range of DM masses. See Ref. [40] and App. B for details of the calculation
of these spectra. These spectra do not include secondary emission of � rays, which will enhance the emission at lower energies
in the leptonic channels and can be important in dense environments.
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Charles,	MASC+16,	astro-ph/1605.02016	

1.  Cut-off	at	the	DM	particle	mass	
2.  Spectra	of	leptonic	channels	“harder”	(i.e.,	“fall	slower”)	than	hadronic	ones.		

Very	popular	“PPPC	4	DM	ID”	Mathematica	
code	can	be	easily	used	to	compute	it	

[Cirelli+11,	arXiv:1012.4515]	
	[http://www.marcocirelli.net/PPPC4DMID.html]	

•  Annihilation	and	decay	
•  Most	DM	channels	
•  Gammas,	neutrinos,	e-,e+,antideuterons,	etc.	
•  Propagation	of	charged	particles	in	the	Galaxy.	
•  Prompt	and	inverse	Compton	scattering	
•  Extragalactic	gammas.	
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4. Search Strategies, Status, and Projections for Dark Matter Detection with the LAT

In this section we describe astrophysical objects that are the primary targets for searching for signals
from DM annihilation. We first present an overview of the various WIMP search targets and results; then
for each target we summarize the status of current searches, and project how the sensitivity will improve
with continued LAT data taking. Finally we discuss searches for axion or ALP DM and how the sensitivity
of those searches will improve with additional LAT data.

4.1. Dark Matter WIMP Search Targets

Tab. 1 summarizes the targets for WIMP searches. The di↵erences between the targets are pronounced
enough to warrant significant modifications in the search techniques, as discussed earlier in this section. For
example, searches targeting known dark-matter dominated Milky Way satellites (§4.5.1) are very similar to
blind searches for point-like emission performed when creating catalogs of �-ray point sources such as the
3FGL; on the other hand, extracting a isotropic signal from DM halos of galaxies at cosmological distances
(§4.8) requires very detailed modeling of both the Galactic foreground emission and the contributions of
unresolved sources.

Target Distance ( kpc) J factor ( GeV2 cm�5) Angular Extent (�)
Galactic center / halo (§4.4) 8.5 3 ⇥ 1022 to 5 ⇥ 1023 > 10

Known Milky Way satellites (§4.5) 25 to 300 3 ⇥ 1017 to 3 ⇥ 1019 < 0.5
Dark satellites (§4.6) up to 300 up to 3 ⇥ 1019 < 0.5

Galaxy Clusters (§4.7) > 5 ⇥ 104 up to 1 ⇥ 1018 up to ⇠ 3
Cosmological DM (§4.8) > 106 - Isotropic

Table 1: Summary table of DM search targets discussed in this paper.

4.2. Current WIMP Search Sensitivity

We show a subset of published results for various DM targets for the bb̄ channel in Fig. 9. For each
target, we selected recent results that used moderate assumptions, i.e., neither the most conservative nor
the most optimistic cases. Because of di↵erences in the datasets, DM profiles, and background modeling,
these results should be taken as representative and absolute comparisons should be interpreted with caution.
Details about the scenarios considered (e.g., the DM distribution) for each of the targets are provided in
Tab. 2.

Target Ref. Scenario Other Refs.
Galactic halo §4.4 [65] NFW profile “constrained free source fits” 3 � ULs -

Galactic center (limits) §4.4 [39] NFW profile, 3 � ULs -
Galactic center (best-fits) §4.4 [3, 4, 81–84] gNFW profile with � ⇠ 1.2 [2, 85]

dSphs §4.5 [5] NFW profile [86–94]
Unid. Satellites §4.6 [95] 95% CL ULs [88, 96–99]
Galaxy clusters §4.7 [100] Virgo, “DM-I” conservative boost model [101–108]

Isotropic §4.8 [77] 2 � ULs [109–111]
Cross-correlation §4.8 [112] “annLOW, ALLGeV”, 95% CL ULs [61, 113–122]

Ang. Power Spectrum §4.8 [123] “Galactic + Extragal HIGH DM” [123–137]

Table 2: The works referenced here for the various DM targets are the representative results shown in Fig. 9. The scenarios given
in quotation marks appear as they were named in the original reference to distinguish them from other scenarios presented in
the same papers. For details about the exact parametrization of the various DM signals as well as the modeling of astrophysical
backgrounds the reader is referred to the original references.
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Figure 1: The density as a function of Galactocentric radius (left) and the integrated J factor as a function of angular separation
from the Galactic center for several widely considered radial profiles of the DM halo of the Milky Way.

Figure 2: Spectra, dN�/dE� , of prompt � rays per DM pair annihilation for di↵erent annihilation channels and DM masses.
(Upper left) Annihilation spectra of 200 GeV DM into various annihilation channels. Annihilation spectra into bb̄ (upper right),
⌧+⌧� (lower left), and W+W� (lower right) for a range of DM masses. See Ref. [40] and App. B for details of the calculation
of these spectra. These spectra do not include secondary emission of � rays, which will enhance the emission at lower energies
in the leptonic channels and can be important in dense environments.
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Milky	Way	

Typical	J-factor	values	

	LCDM	predictions	crucial!	
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J-factor	computation:	CLUMPY	

[Courtesy	of	M.	Hütten]								
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From	the	astrophysics	point	of	view,		

it’s	all	about	the	J-factor.	
	
	

Observational	uncertainties	are	large	and	typically	
prevent	a	precise	J-factor	determination.	

	
	

We	can	use	ΛCDM	cosmological	simulations	to	shed	
light	on	J-factor	values	



N-body	cosmological	simulations	

Some	applications…	

ü  Large	Scale	Structure	studies.	

ü  Internal	structure	of		CDM	halos.	

ü  Substructures.	

ü  Galaxy	formation	and	evolution.	

ü  Strong/weak	lensing	

ü  Near-field	cosmology	

ü  Streams.	

ü  Dark	matter	detection.	
10 

Zoom	sequence	from	100	to	0.5	Mpc/h		
Millenium-II	simulation	(Boylan-Kolchin+09)	

ü  Great	theoretical	advances	in	cosmic	structure	and	
galaxy	formation	in	the	last	40	years.	
	(e.g.	Spherical	Collapse	+	Press-Schechter	formalism)	

ü  BUT…	Structure	formation	highly	non-linear	process	
	à	N-body	simulations	needed	



How	to	recreate		
the	Universe	in	the	

computer?	

1.   INITIAL	CONDITIONS	

2.	EVOLUTION	



CMB	is	a	snapshot	of	primordial	density	fluctuations	in	matter	at	z=1000.	These	fluctuations	
later	collapse	under	gravity	to	form	structures	in	the	Universe.	

1.   INITIAL	CONDITIONS	
	

-  Cosmological	model	
-  Matter	power	spectrum	

CMB!	
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Bolshoi-Planck 
Cosmological Simulation

NASA Ames Research Center
Anatoly Klypin & Joel Primack   

8.6x109 particles   1 kpc resolution



DARK	MATTER	HALOS	

•  Basics:	
–  Collapsed	structures.	
–  Self-bound.	
–  “Virialized”	(i.e.	in	equilibrium)	à	Virial	radius	and	mass,	Rvir	and	Mvir.	

•  Halos	are	the	basic	building	blocks	of	Large	Scale	Structure.		
–  Galaxies	also	reside	in	them.	

	
•  Halos	come	from	peaks	in	the	initial	density	field	

	à	theoretical	study	of	initial	peaks’	properties		
									à	final	halo	properties	(density	profiles,	abundance,	clustering…)	
									à	starting	point	for	semi-analytical	models,	e.g.	Spherical	Collapse.	
									à	complicated.	
	à	N-body	simulations.	

14	
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Structure	of	the	Coma	cluster	
Np=	300	

Structure	of	DM	halos	
Np=	32000/250000	

GHALO	Milky	Way	
Np=	2·109	

The	structure	of	Cold	Dark	Matter	halos	

Peebles	1970	 Dubinski	&	Carlberg	1991	

Stadel	et	al.	2009	



Virialized	DM	halos	of	all	masses	seem	to	exhibit	a	nearly	
universal	DM	density	profile,	e.g.	Einasto	or	NFW.	
	

	

	

	

	

	

The	structure	of	CDM	halos	

ρ r( ) = ρ0
(r / rs )(1+ r / rs )

2

	Navarro-Frenk-White	(1996)	
[	NFW]	

Parameters:		
					(ρ0	,	rs)	or	(cvir,Mvir)	or	(vmax,rmax)	
					Concentration	cvir	=	Rvir	/	rs	

DM-only	simulations	predict	cusps	with	
log	slopes	of	-1	in	the	center	of	DM	halos	
	
The	origin	of	these	profiles	is	not	well	
understood.	

Ann. Phys. (Berlin) 0, No. 0 (2012)
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Figure 6 Spherically-averaged density (left) and logarithmic
slope (right) profiles for the nine Phoenix rich cluster halos as a
function of radius. Radii are scaled to the characteristic radius,
r−2, (the radius at which the logarithmic slope has the “isother-
mal” value of -2 in the best-fit Einasto profile). Profiles are plot-
ted down to the minimum numerically converged radius, rconv,

defined by [156]. The thick dashed black line shows the mean
density profile for a stack of all nine Phoenix halos, made after
scaling each to its own virial mass and radius. The thick red
dashed line shows the result of the same stacking procedure,
but applied to the six Aquarius galaxy halos.

of alignments with respect to all three axes is fairly broad
[81,162,164,165,170].
The spins and shapes of halos are sensitive to their large-

scale environment: more rapidly rotating halos of a given
mass are more strongly clustered, as are rounder halos,
even though asphericity correlates positively with rotation
[81]. The strength of these correlations increases with halo
mass: it is weak for galactic halos, but can reach a factor of
two for galaxy cluster halos. This is a further indication that
the internal properties of halos depend not only upon their
mass but also upon the environment in which they form.
The internal distribution of angular momentum within

halos is typically fairly regular. On average, for halos of a
given mass, the median specific angular momentum, j , in-
creases with radius as j (≤ r ) ∝ r . Thus, halos do not rotate
like solid bodies, but rather have an angular velocity that
scales roughly as r−1 . However, there is a large amount of
scatter around these trends [171]. The cumulative distribu-
tion of j can be fit by a universal function which follows a
power-law, M (< j ) ∝ j , over most of the mass, and flattens
at large j [144]. The direction of the angular momentum
vector varies considerably with radius: the median angle
between the inner (r <∼0.25 r200) and total (≤ r200 ) angu-
lar momentum vectors is about 25% [171]. Again there is
large scatter: 95% of halos have their total angular momen-
tum directed between 5 ◦ and 65 ◦ from the inner direction.
The large scatter in the angular momentum structure of

halos reflects the stochastic nature of halo assembly. Merg-

ers, both major and minor, can have dramatic effects, par-
ticularly in the inner parts. For example, analysis of simu-
lated galactic halos [172] shows that large changes in the di-
rection of the angular momentum vector occur frequently:
over their lifetimes (i.e. after a halo acquires half of its final
mass), over 10% of halos experience a flip of at least 45 ◦ in
the spin of the entire system and nearly 60% experience a
flip this large in the inner regions. Such changes, often asso-
ciated with misalignments between the shape and angular
momentum of halos, can have drastic effects on the proper-
ties of the galaxy forming in the halo, sometimes inducing
major morphological transformations [173].

5.3 Halo substructure

Cold dark matter halos are not smooth: vast numbers of
self-bound susbtructures (“subhalos”) swarm within them.
Subhalo centres are the sites where cluster galaxies or satel-
lites galaxies should reside. Substructures were identified
as soon as N-body simulations of halos reached sufficiently
high resolution [136, 174]. It was immediately apparent
that a significant fraction of the halo mass is tied up in sub-
halos and that most of them reside in the outer parts of
the main halo, those that venture close to the centre being
stripped or disrupted by the strong tidal forces. Subhalos
have cuspy, NFW-like density profiles but, because of tidal
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nal does not exceed the observed gamma-ray emission by the Fermi-LAT in an optimized region79

around the GC. The region is chosen in such a way that the S/N ratio is maximized. This kind of80

analysis, without modeling of the astrophysical background, was also carried out by the Fermi-LAT81

collaboration to constrain DM models from Galactic halo observations [19].82

The paper is organized as follows. In Section 2 we discuss DM density profiles such as Navarro,83

Frenk and White (NFW) [20, 21], Einasto [22, 23] and Burkert [24], paying special attention to84

the e�ect of baryonic compression. In Section 3 we analyze the gamma-ray detection from DM85

annihilation, taking into account the contributions from prompt photons and photons induced via86

inverse Compton scattering (ICS). The latter is specially relevant for the µ+µ� channel. We will87

see that compressed profiles significantly increase the gamma-ray flux in the inner regions of the88

Galaxy. In Section 4 we analyze the gamma-ray flux from Fermi-LAT measurements. For that we89

use an optimized region around the GC, which will depend on the particular DM density profile90

considered. Taking into account these results, in Section 5 we are able to obtain significant limits91

on the annihilation cross-section for a generic DM candidate annihilating to bb̄, ⌃+⌃�, µ+µ� or92

W+W�. For example, the thermal cross section is excluded for a DM mass smaller than about 70093

GeV in the bb̄ channel and 500 GeV in the ⌃+⌃� and W+W� channels. For the µ+µ� channel the94

exclusion is for a mass smaller than about 150 to 400 GeV, depending on models of the Galactic95

magnetic field. In general, the upper limits on the annihilation cross section of DM particles are96

two orders of magnitude stronger than without contraction, where the thermal cross section is not97

excluded. Finally, the conclusions are left for Section 6.98

2 Dark matter density profiles99

Cosmological N -body simulations provide important results regarding the expected DM density in100

the central region of our Galaxy. Simulations suggest the existence of an universal DM density101

profile, valid for all masses and cosmological epochs. It is convenient to use the following parame-102

terization for the DM halo density [25], which covers di�erent approximations for DM density:103

⇧(r) =
⇧s

�
r
rs

⇥⇥  
1 +

�
r
rs

⇥�⌦⇥�⇤
�

, (1)

where ⇧s and rs represent a characteristic density and a scale radius, respectively. The NFW density104

profile [20, 21], with (�,⇥,⇤) = (1,3,1), is by far the most widely used in the literature. Another105

approximation is the so-called Einasto profile [22, 23]106

⇧Ein(r) = ⇧s exp

⌥
� 2

�

⇧⇤
r

rs

⌅�

� 1

⌃�
, (2)

which provides a better fit than NFW to numerical results [23, 26]. Finally, we will also consider DM107

density profiles that possess a core at the center, such as the purely phenomenologically motivated108

Burkert profile [24]:109

⇧Burkert(r) =
⇧s r3s

(r + rs) (r2 + r2s)
. (3)
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1. INTRODUCTION: FROM COLD COLLAPSE
TO HIERARCHICAL CLUSTERING

1.1. A short history

N-body simulations of the gravitational collapse of
a collisionless system of particles pre-dates the CDM
model. Early simulations in the 1960’s studied the for-
mation of elliptical galaxies from the collapse of a cold
top-hat perturbation of stars1,2,3. The resulting virial-
isation process gave rise to equilibrium structures with
de Vaucouleurs4 or Einasto5,6 type density profiles, simi-
lar to observations of elliptical galaxies. It is remarkable
that the end state of almost any gravitational collapse,
independent of the small scale structure and hierarchical
merging pattern, leads to a similar global structure of the
final equilibrium system7,8,9.

Computer simulations in the 70’s attempted to follow
the expansion and a collapse of a spherical overdensity to
relate to the observed properties of virialised structures
such as galaxy clusters10. Using a random distribution
of particles with a Poisson power spectrum lead to the
initial formation of many bound clumps, however it was
observed that these bound structures were destroyed as
the final system formed - resulting in a smooth distri-
bution of matter. This overmerging problem persisted
for over two decades and motivated the development of
semi-analytical models for galaxy formation11.

During the 1980’s, it was proposed that cosmic struc-
ture formation follows a dominant, non-baryonic cold
dark matter (CDM) component12. Cold dark mat-
ter could consist of new and yet undiscovered weakly-
interacting massive particles (WIMPs), which occur for
example in super-symmetric extensions of the Standard
Model of particle physics13. ”Cold” means that these
particles have rather small thermal velocities, which al-
lows the formation of very small structures, typically
down to far below one solar mass14,15,16. CDM together
with the even more mysterious dark energy (usually de-
noted ”Λ”) are the dominant components of the ΛCDM
model, in which all the ordinary matter accounts for only
4.6 percent of the total. ΛCDM has by now become the
”standard cosmological model” and its parameters (and
therefore the initial conditions for structure formation)
are now known to a reasonable precision17.

Computer simulations allow to follow the non-linear
evolution of perturbations, starting from realistic and
well constrained cosmological initial conditions. The fi-
nal quasi-equilibrium structures are the dark matter ha-
los that are observed to surround galaxies and galaxy
clusters. During the 1980’s, the first simulations of the
CDM model were carried out. Large cubes of the universe
were simulated in an attempt to match the large scale
clustering of galaxies. Some of the most basic properties
of collapsed structures were discovered - the distribution
of halo shapes, spin parameters etc18,19. It was not un-
til the simulations of Dubinski & Carlberg that individ-
ual objects were simulated at sufficiently high resolution

FIG. 1: Density profile of the million particle dark matter halo
simulation of Dubinski & Carlberg 1990 (crosses). The solid
line shows the best fit NFW profile (Eqn. 1) to the original
data. This Figure was adapted from22 by John Dubinski and
it is reproduced here with his permission.

to resolve their inner structure on scales that could be
compared with observations20. Using a million particle
simulation of a cluster mass halo run on a single work-
station for an entire year, these authors found central
cusps and density profiles with a continuously varying
slope as a function of radius. They fit Hernquist profiles
to their initial simulations but an NFW profile21 provides
an equally good fit (see Figure 1). Most likely due to a
large softening length, the final virialised structure was
almost completely smooth.

Navarro et al. (1996) published results of simulations
of halo density profiles from scales of galaxies to galaxy
clusters. They demonstrated that all halos could be rea-
sonably well fit by a simple function (Eqn. 1) with a con-
centration parameter that was related to the halo mass21.
However, with less than 104 particles only the mass pro-
file beyond about 5-10 percent of the virial radius was re-
solved reliably. Shortly afterwards, simulations with 106

particles showed cusps steeper than r−1 down to their
innermost resolved point near one percent of the virial
radius23. These simulations also resolved the overmerg-
ing problem24 - the resolution was sufficient to resolve
cusps in the progenitor halos enabling the structures to
survive the merging hierarchy23,25,26. The final surviving
substructure population is a relic of the entire merger his-
tory of a given CDM halo.

Dubinsky&Carlberg	90	
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Figure 11. Dependence of halo concentration c on log σ−1 after
rescaling all the results of Bolshoi and MultiDark simulations to
z = 0. The plot shows a tight intrinsic correlation of C on σ′.

and

σ−1

0 = 1.047, σ−1

1 = 1.646, β = 7.386, x1 = 0.526. (22)

Accurate approximations for the rms density fluctua-
tion σ(M,a) for the cosmological parameters of the Bol-
shoi/MultiDark simulations are given in Klypin et al. (2010)
and for convenience are reproduced here:

σ(M,a) = D(a)
16.9 y0.41

1 + 1.102 y0.20 + 6.22 y0.333
, (23)

y ≡
[

M

1012h−1M⊙

]−1

.

Figure 10 shows the evolution of cmin and σ−1

min
with

“time” x, and presents the approximations given in eqs.(19-
20). The evolution is clearly related with the transition from
the matter dominated period (Ωm(a) ≈ 1, x < 0.3) to the
Λ-dominated one with x > 0.7. Approximations for the
halo concentration are presented in Figure 8 for some red-
shifts. The parameters A, b, c, d of the C(σ′) relation are de-
termined from the best fit to the concentration–σ(M) Bol-
shoi/MultiDark data at all redshifts.

Here is a step-by-step description how to estimate halo
concentration:

• For given mass M and a = 1/(1 + z) find x, D(a), and
σ(M,a) using eqs. (13, 12, 16 or 23)

• Use eq. (18) to find parameters B0 and B1.
• Use eqs. (15-16) to find σ′ and C
• Use eq. (14) to find halo concentration c(M, z).

We present the final results and approximations in two
different forms. Functions B0 and B1 can be used to find
values of C and σ′, which is effectively the same as rescal-
ing concentrations c(σ, x) measured in simulations to the

Figure 12. Halo mass–concentration relation of distinct halos at
different redshifts in the Bolshoi (open symbols) and MultiDark
(filled symbols) simulations is compared with analytical approxi-
mation eqs.(14-16 (curves)). The errors of the approximation are
less than a few percent.

same redshift z = 0. Figure 11 shows results of simulations
rescaled in this way. The U-shape of C(σ′) is clearly seen.
The C(σ′) function to some degree plays the same role for
concentrations as the function f(σ) for the mass function
in eqs.(3-4). It tells us that there is little evolution in the
dependence of concentration with mass once intrinsic scal-
ings (e.g., x instead of expansion parameter) are taken into
account.

Another way of showing the approximations is simply
plot eqs. (14-16) for different redshifts and compare the re-
sults with the median concentration - mass relation in our
simulations. This comparison is presented in Figure 12. It
shows that the errors of the approximation are just a few
percent for the whole span of masses and redshifts.

6 SUMMARY AND CONCLUSIONS

We study the halo concentrations in the ΛCDM cosmology,
from the present up to redshift ten, over a large range of
scales going from halos similar to those hosting dwarf galax-
ies to massive galaxy clusters, i.e. halo maximum circular
velocities ranging from 25 to 1800 km s−1 (about six orders
of magnitude in mass), using cosmological simulations with
high mass resolution over a large volume. The results pre-
sented in this paper are based on the Bolshoi, MultiDark,
and Millennium-I and II simulations. There is a good con-
sistency among the different simulation data sets despite
the different codes, numerical algorithms, and halo/subhalo
finders used in our analysis.

The approximations given here for the evolution of the
halo concentration constitute the state-of-the-art of our cur-
rent knowledge of this basic property of dark matter halos

Prada+12	
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Describes	the	structural	halo	
properties.	
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Different	c(M)	models	
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Current	knowledge	of	the	c(M)	relation	at	z=0	

Concentration	c	=	Rvir	/	rs	

MASC	&	Prada,	MNRAS,	442,	2271	(2014)	[astro-ph/1312.1729]	

The flattening of the concentration-mass relation and implications for the boosts 3
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Figure 1. Top panel: Current knowledge of the median concentration-mass relation at z = 0 for all halo masses available in the
literature from different simulation data sets, i.e. from the smallest Earth-like DM microhalos predicted to exist in the CDM universe
(∼10−6h−1M⊙), up to the largest cluster-size halos (∼1015h−1M⊙). At the high-mass end, the results from Bolshoi (blue circles) and
MultiDark (purple circles) are shown. The two empty black squares at ∼109h−1M⊙ and the three filled black squares at ∼108h−1M⊙

were derived from Ishiyama et al. (2013) and Coĺın et al. (2004), respectively. Another individual ”Draco-like 108h−1M⊙ halo is also
plotted as a green pentagon (Moore et al. 2001). A couple hundreds dwarf halos with masses ∼106 – 109 h−1M⊙ (red triangles) were
extracted from the VL-II data (Diemand et al. 2008). At the low-mass end, we show the microhalo results taken from Diemand et al.
(2005) (orange filled diamonds) and Anderhalden & Diemand (2013) (orange empty diamonds) for individual halos, as well as those
recently reported by Ishiyama (2014) for a sample of thousands of microhalos (empty black triangles). We also provide the upper limit
to halo concentrations obtained by Diemand et al. (2005) in the range 10−6 – 10 h−1M⊙ (pink dotted line). The P12 concentration
model (Prada et al. 2012) is shown with a solid line. The shaded gray region represents a typical 1σ concentration scatter of 0.14 dex
centered on the P12 model. The dashed curve represents the updated M08 version (Macciò, Dutton, & van den Bosch 2008) of the
B01 toy concentration model (Bullock et al. 2001). All concentration values but those from MultiDark, Bolshoi and VL-II, have been
extrapolated down to z = 0 by means of the (1 + z) correction factor. Bottom panel: Same data set but displayed in the c – σ−1 plane,
which allows for a more detailed analysis and comparison between simulations and model in terms of the amplitude of linear density
fluctuations. The concentration values shown are those in the original set of simulations at the corresponding redshift where they were
measured, while the σ(M) values are the ones that halos would have at present time for those values of the concentration, see text for
further details. Solid (dashed) line refers to the σ(M) range in which the P12 model was (not) tested against simulations.

c⃝ 2002 RAS, MNRAS 000, 1–??

[SCP14]	



20	

GHALO	simulation	[Stadel+09]	

CDM	HALO	SUBSTRUCTURE	



21	



22	

x	
DWARFS	

Unobserved	satellites	

GHALO	simulation	
[Stadel+09]	

Milky	Way	
virial	radius	

x	

x	

x	



23	

DM	annihilation	boost	factor	from	substructure	

DM	annihilation	signal	is	proportional	to	the	DM	density	squared	
à Enhancement	of	the	DM	annihilation	signal	expected	due	to	subhalos.	
	

4 Sánchez-Conde & Prada

as done in P12 and shown in the right panel of Fig. 1. In

such c – ⌅(M)
�1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (⌅ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (⌅ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

�0.5 . log[⌅(M)]
�1 . 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

di⇥erent redshifts, the model can be safely used to predict

concentration values of any simulation data whose ⌅(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
�6 < h�1M� < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 . h�1M� . 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in ⇥-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation ⇥-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in �CDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The e⇥ect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ⇠10
5h�1M�, still very far from the

predicted halo cut-o⇥ mass, of the order of 10
�6h�1M� or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the �CDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =

1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =

A/M (m/M)
��

is the subhalo mass function. Values for

� ranging between � = 1.9� 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for � = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of

c� 2002 RAS, MNRAS 000, 1–??

Substructure	BOOST	FACTOR:	 L	=	Lhost	*	[1+B],	so		B=0	à	no	boost	
	 	 												B=1	à	Lhost	x	2		due	to	subhalos	
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as done in P12 and shown in the right panel of Fig. 1. In

such c – ⌅(M)
�1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (⌅ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (⌅ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

�0.5 . log[⌅(M)]
�1 . 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

di⇥erent redshifts, the model can be safely used to predict

concentration values of any simulation data whose ⌅(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
�6 < h�1M� < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 . h�1M� . 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in ⇥-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation ⇥-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in �CDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The e⇥ect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ⇠10
5h�1M�, still very far from the

predicted halo cut-o⇥ mass, of the order of 10
�6h�1M� or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the �CDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =

1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =

A/M (m/M)
��

is the subhalo mass function. Values for

� ranging between � = 1.9� 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for � = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of

c� 2002 RAS, MNRAS 000, 1–??
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as done in P12 and shown in the right panel of Fig. 1. In

such c – ⌅(M)
�1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (⌅ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (⌅ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

�0.5 . log[⌅(M)]
�1 . 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

di⇥erent redshifts, the model can be safely used to predict

concentration values of any simulation data whose ⌅(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
�6 < h�1M� < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 . h�1M� . 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in ⇥-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation ⇥-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in �CDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The e⇥ect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ⇠10
5h�1M�, still very far from the

predicted halo cut-o⇥ mass, of the order of 10
�6h�1M� or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the �CDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =

1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =

A/M (m/M)
��

is the subhalo mass function. Values for

� ranging between � = 1.9� 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for � = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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as done in P12 and shown in the right panel of Fig. 1. In

such c – ⌅(M)
�1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (⌅ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (⌅ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

�0.5 . log[⌅(M)]
�1 . 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

di⇥erent redshifts, the model can be safely used to predict

concentration values of any simulation data whose ⌅(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
�6 < h�1M� < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 . h�1M� . 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in ⇥-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation ⇥-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in �CDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The e⇥ect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ⇠10
5h�1M�, still very far from the

predicted halo cut-o⇥ mass, of the order of 10
�6h�1M� or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the �CDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =

1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =

A/M (m/M)
��

is the subhalo mass function. Values for

� ranging between � = 1.9� 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for � = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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as done in P12 and shown in the right panel of Fig. 1. In

such c – ⌅(M)
�1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (⌅ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (⌅ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

�0.5 . log[⌅(M)]
�1 . 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

di⇥erent redshifts, the model can be safely used to predict

concentration values of any simulation data whose ⌅(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
�6 < h�1M� < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 . h�1M� . 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in ⇥-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation ⇥-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in �CDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The e⇥ect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ⇠10
5h�1M�, still very far from the

predicted halo cut-o⇥ mass, of the order of 10
�6h�1M� or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the �CDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =

1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =

A/M (m/M)
��

is the subhalo mass function. Values for

� ranging between � = 1.9� 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for � = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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as done in P12 and shown in the right panel of Fig. 1. In

such c – ⌅(M)
�1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (⌅ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (⌅ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

�0.5 . log[⌅(M)]
�1 . 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

di⇥erent redshifts, the model can be safely used to predict

concentration values of any simulation data whose ⌅(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5X

i=0

ci ⇥

ln

✓
M200

h�1M�

◆�i

, (1)

where ci = [37.5153,�1.5093, 1.636 · 10�2, 3.66 · 10�4,
�2.89237 · 10�5, 5.32 · 10�7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
�6 < h�1M� < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 . h�1M� . 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in ⇥-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation ⇥-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in �CDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The e⇥ect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ⇠10
5h�1M�, still very far from the

predicted halo cut-o⇥ mass, of the order of 10
�6h�1M� or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L / c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the �CDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =

1

L(M)

Z M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4⇤Mc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) � 1/(1 + c), and dN/dm =

A/M (m/M)
��

is the subhalo mass function. Values for

� ranging between � = 1.9� 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for � = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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Substructure	BOOST	FACTOR:	

B(M)	depends	on	the	internal	structure	of	the	subhalos	and	their	abundance	
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L	=	Lhost	*	[1+B],	so		B=0	à	no	boost	
	 	 												B=1	à	Lhost	x	2		due	to	subhalos	
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where in the last step we have assumed an NFW profile and
for halos, we use the parametrization for the concentration
parameter from Prada et al. (2012) using the fit obtained in
Sánchez-Conde & Prada (2014).

With this at hand, the luminosity of a subhalo of mass m
at a distance Rsub from the center of the host halo, L(m,xsub),
is defined as

L(m,xsub) = [1 +B(m,xsub)]Lsmooth(m,xsub) . (12)

where now Lsmooth(m,xsub) is the luminosity for the smooth
distribution of the given subhalo and B(m,xsub) is the boost
factor due to the next level of substructure. The luminosity
of a subhalo (sub-subhalo) is given by the same functional
form as that of a field halo, but including the dependence of
the concentration parameter on the position of the subhalo
(sub-subhalo) inside the host halo (subhalo).

In addition to the mentioned dependences, we note that
subhalos are not homogeneously distributed within the host
halo (Springel et al. 2008; Hellwing et al. 2015; Rodŕıguez-
Puebla et al. 2016). However, we have checked that the precise
spatial distribution of subhalos inside halos has only a small
impact on our results (below 10%). Therefore, for the sake
of comparison with previous works, we do not include this
dependence here and postpone its discussion to future work.
By assuming that the subhalo mass function does not change
within the halo, we can write the boost factor as

B(M) =
3

Lsmooth(M)

Z M

Mmin

dN(m)
dm

dm

Z 1

0

dxsub

[1 +B(m)] L(m,xsub)x
2
sub , (13)

where dN(m)/dm is the subhalo mass function for a halo of
mass M , dN(m)/dm = A/M (m/M)�↵. The normalization
factor is equal to A = 0.012 for a slope of the subhalo mass
function ↵ = 2 and to A = 0.03 for ↵ = 1.9 (Sánchez-Conde
& Prada 2014), and was chosen so that the mass in the re-
solved substructure amounts to about 10% of the total mass
of the halo,11 as found in recent simulations (Diemand et al.
2007b; Springel et al. 2008). Note that, as done in most of
previous works,12 we have not subtracted the subhalo mass
fraction from the smooth halo contribution, so in principle,
this leads to a slight overestimate of the smooth halo luminos-
ity, and hence, to a slight underestimate of the boost factor.
This is expected to be a small correction, though, since it ap-
plies mainly to the outer regions of the halo where the subhalos
represent a larger mass fraction and the smooth contribution
is much smaller and subdominant with respect to the contri-
bution from substructure (Palomares-Ruiz & Siegal-Gaskins
2010; Sánchez-Conde et al. 2011).

In the case of an NFW profile, as the one we are using,
the luminosity from the smooth DM distribution of a field
halo can also be expressed in terms of the maximum circular
velocity, V h

max, (Diemand et al. 2008)

Lsmooth(V
h
max) '

✓
2.163

f(2.163)

◆2 2.163H0

12⇡G2

r
c
h
V(V

h
max)

2
(V h

max)
3
, (14)

11 Extrapolating the subhalo mass function down to m/M =
10�18, those normalizations correspond to ⇠ 50% (⇠ 30%) of the
total mass of the halo for ↵ = 2 (↵ = 1.9).
12 See, e.g., Pieri et al. (2011) for one of the few exceptions.
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Figure 6. Halo substructure boost to the DM annihilation signal as
a function of the host halo mass. We have used our c200(m200, xsub)
parametrization in Eq. (6) and adopted Mmin = 10�6 M�. We
present results for two values of the slope of the subhalo mass
function, ↵ = 1.9 (lower, light red lines) and ↵ = 2 (black lines).
We also show the boost obtained with the DM profile-independent
definition of cV (green line), for which we have used our fit for
cV(Vmax, xsub) in Eq. (7), and (Vmax)min = 10�3.5 km/s. Notably,
the cV result lies within the results found for c200 and the two slopes
of the subhalo mass function considered. Thin lines correspond to
results obtained assuming subhalos and sub-subhalos are not trun-
cated by tidal forces, while thick lines represent the more realistic
case, in which subhalos and sub-subhalos have been tidally-stripped
(see text). The dashed lines correspond to the results obtained in
Sánchez-Conde & Prada (2014) when assuming that both halos and
subhalos of the same mass have the same concentration values.

and, in a similar way, by including the radial dependence of
the concentration of subhalos, one can obtain the subhalo lu-
minosity function, L(Vmax, xsub).

In this case, the boost factor for a field halo with maxi-
mum circular velocity V

h
max (analogously to Eq. (13)), can be

written as

B(V h
max) =

3
Lsmooth(V h

max)

Z V h
max

(Vmax)min

dN(Vmax)
dVmax

dVmax

Z 1

0

dxsub [1 +B(Vmax)] L(Vmax, xsub)x
2
sub ,

(15)

where (Vmax)min is the value of Vmax which corresponds to
Mmin. In order to compute the luminosity in terms of V

h
max

we need the subhalo mass function in terms of Vmax, and we
use the result of Diemand et al. (2008), dN(Vmax)/dVmax =
(0.108/V h

max) (V
h
max/Vmax)

4.
The results for the boost factor defined in Eqs. (13)

and (15) are shown in Fig. 6, where we use the parametriza-
tions for c200(m200, xsub), cV(Vmax, xsub), c

h
V(V

h
max) and
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c
h
200(M200) given by Eqs. (6), (7) (8) and P12, respectively.
We depict the boost factor for field halos as a function of the
halo mass and adopt Mmin = 10�6

M� or, equivalently for an
NFW profile, (Vmax)min = 10�3.5 km/s (thin solid lines). We
show the results for both cV (green line) and c200 (in this case,
for two values of the slope of the subhalo mass function, ↵ = 2
and ↵ = 1.9 with black and red lines, respectively). Both re-
sults are in good agreement, with the boost factor obtained
from cV lying within the boost factors obtained from c200 for
the two di↵erent slopes of the subhalo mass functions consid-
ered. The results obtained in Sánchez-Conde & Prada (2014)
are also shown (dashed lines). As done in this latter work and
discussed above, we are including only the two first levels of
substructure, namely subhalos and sub-subhalos, as the con-
tribution of the third substructure level was found to be al-
ways less than 6%. Yet, we note that the second level (namely
B(m,xsub) in our notation) can contribute up to ⇠ 40% in
some cases. As can be seen from Fig. 6, we obtain a total
boost which is a factor of 2 � 3 larger than that obtained
in Sánchez-Conde & Prada (2014), where, we recall, the au-
thors assumed that halos, subhalos and sub-subhalos of the
same mass have the same concentrations. Interestingly, our
results also agree well with those recently found by Bartels
& Ando (2015) by means of a semi-analytical model for the
boost based on mass-accretion histories and subhalo accretion
rates. Similar boost values have also been reported in Zavala
& Afshordi (2016), where authors invoked the universality of
DM clustering in phase space within subhalos across a wide
range of host halo masses (Zavala & Afshordi 2014) to predict
DM annihilation signals.

We caution that, in our work and in Sánchez-Conde &
Prada (2014), an NFW DM density profile is always assumed
for all virialized structures. Nevertheless, it has been recently
shown that subhalos and, very especially, microhalos with
masses close to Mmin = 10�6

M� seem to exhibit DM den-
sity profiles which are cuspier than NFW in the innermost
regions (Diemand et al. 2008; Ishiyama 2014). Thus, their
concentrations do not correspond to the NFW concentration
values discussed and adopted throughout this paper. Fortu-
nately, it is possible to convert from one to another (Ricotti
2003; Anderhalden & Diemand 2013) and to perform a one-to-
one comparison among them. The result of adopting subhalo
concentrations that are corrected by the mentioned e↵ect is a
moderate increase of the boost factor, up to ⇠ 30% (Ander-
halden & Diemand 2013; Ishiyama 2014).

3.3 E↵ect of tidal stripping on the boost

So far in the calculation of the boost factor, we have not con-
sidered the fact that subhalos su↵er from tidal forces within
their host halos and thus, that they are expected to be trun-
cated at some radius rt < r200. As already discussed above,
this also implies that m200 is not the true mass of the subhalo
(which was nevertheless assumed to be such in the calculation
of the boost factor in Sec. 3.2, Eqs. (13) and (15)). Therefore,
a more precise value of the boost can be derived if the actual
subhalo mass m, obtained by integrating the subhalo density
distribution up to rt, was adopted instead. In a similar way,
the subhalo luminosity must be truncated at rt instead of r200,

Figure 7. Example of subhalo substructure boost to the DM anni-
hilation signal (the one expected, e.g., for dwarf satellite galaxies)
as a function of the subhalo mass for the particular case of subhalos
inside a host halo with mass M200 = 1012 M� and located at a
distance of 80 kpc from the host halo center. This is approximately
the case of Draco, one of the Milky Way dwarf galaxy satellites
(mDraco ⇠ ⇥108 M� (Lokas et al. 2005)). We show results ob-
tained assuming subhalos and sub-subhalos are not truncated (or,
in some cases, destroyed) by tidal forces (thin lines), and assuming
subhalos and sub-subhalos are tidally stripped (more realistic case;
thick lines). We have used our c200(m200, xsub) parametrization of
Eq. (6) and adopted Mmin = 10�6 M�. We also present results for
two values of the slope of the subhalo mass function, ↵ = 1.9 (light
red lines) and ↵ = 2 (black lines). See text for further discussion.

i.e.,

Lt
smooth(m200, xsub) ⌘

Z rt

0

⇢
2
sub(r) 4⇡ r

2
dr =

m200 c
3
200(m200, xsub)

[f(c200(m200, xsub))]
2

200 ⇢c
9

⇥
✓
1� 1

(1 + rt/rs(m200, xsub))3

◆
.

(16)

This is the only modification one has to include in the cal-
culation of the boost up to the first level of substructures.
However, to compute the boost factor of subhalos (i.e., up to
the second level of halo substructure), in addition to intro-
ducing the analogous modification in the calculation of the
sub-subhalo luminosity, the variable xsub�sub ⌘ rsub/r200 (the
equivalent to xsub for sub-subhalos) must be substituted by
rsub/rt, where rsub is the distance of the sub-subhalos to the
center of the host subhalo. Moreover, we assume that tidal
forces do not modify the subhalo and sub-subhalo mass func-
tions per unit volume. This means that the number of sub-
subhalos is reduced and therefore, the boost for subhalos.

c� 2016 RAS, MNRAS 000, 1–??

Subhalo	boost	model	

[Agrees	also	with	Bartels	&	Ando	(2015)	and	Zavala	&	Afshordi	(2015)]	

MAIN	HALOS	 SUBHALOS	

O(30)	boost	for	MW-size	halos	
(factor	~2	higher	than	SCP14)	

Very	small	boost	for	subhalos,	e.g.	dwarfs	

[Moliné,	MASC,	Palomares	and	Prada	(2017)	MNRAS,	466,	4974]	

1.  Make	use	of	our	better	knowledge	on	subhalo	concentrations.	
2.  Tidal	stripping	included	(Roche	criterium).	
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Figure 6. Left panel: Comparison of the DM annihilation flux profiles (normalized to fSUSY) for the
subsample of those three dwarfs and three clusters with the highest fluxes. Right panel: Same as left
panel but this time including substructure following the 3K10 model described in section 4.3.

5 DM annihilation flux predictions and detection prospects for IACTs

5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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