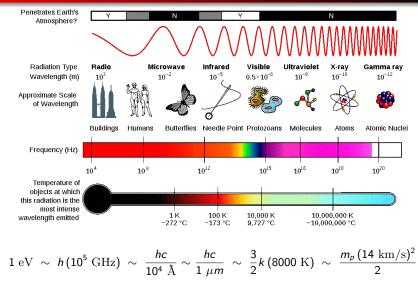
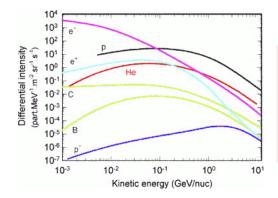
> Astrophysical background Episode I – the origin

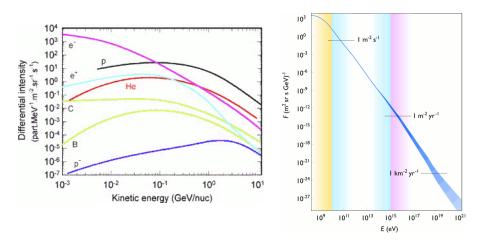
Yago Ascasibar (UAM, Spain)

 $1^{\rm st}$ Thai-CTA Workshop on Astroparticle Physics Chiang Mai (Thailand) 19/02/2019


Outline

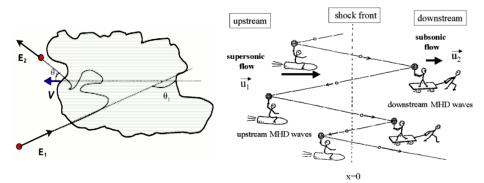


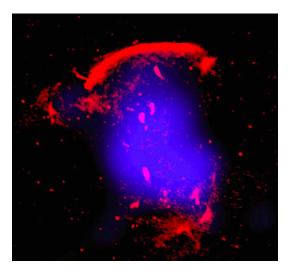
Thermal processes



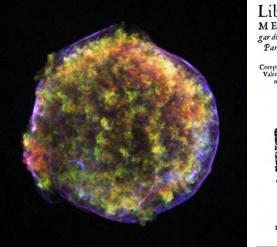

Cosmic rays

• Protons:	88 %
Helium:	10%
Other nuclei:	1 %
Electrons:	1 %

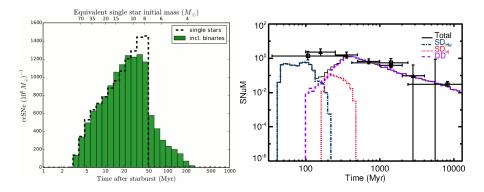

Cosmic rays

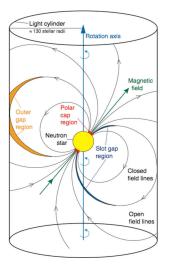


Where do the cosmic rays come from?

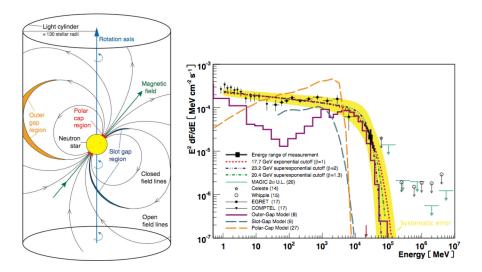

Fermi acceleration mechanisms

Astrophysical shocks

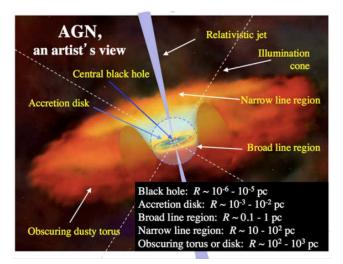

Supernova remnants (SNR)

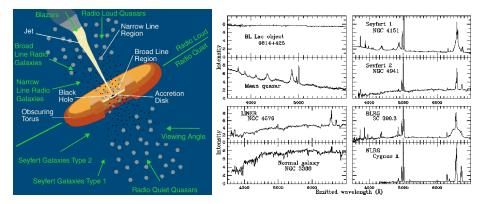

Libro del nueuo Co META, Y DEL LVgar donde fe bazei y como fe Vera por las Parallaxes quan lexos eftan de tuerra ; y del Prognofico defte: Compueto por el Matto Hieronymo Minóz Valenciano. Cathedratico de Hebreo y Mathematica en la Vinierífad de Valencia.

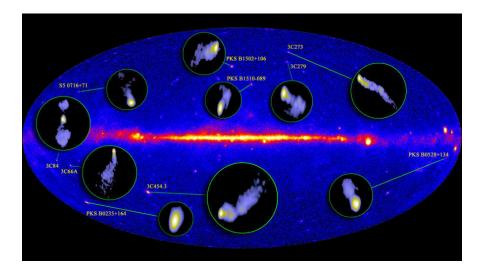
Supernova remnants (SNR)



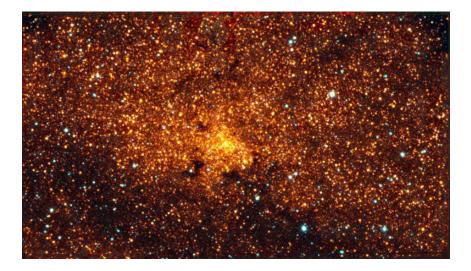
Pulsar Wind Nebulae (PWN)

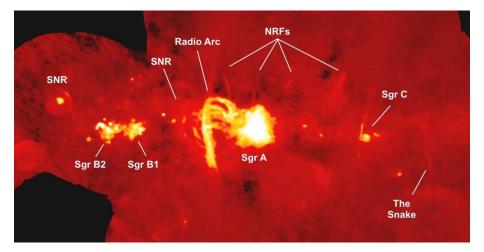



Pulsar Wind Nebulae (PWN)

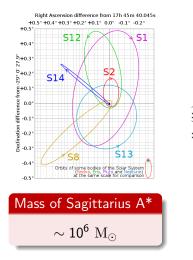

Active Galactic Nuclei (AGN)

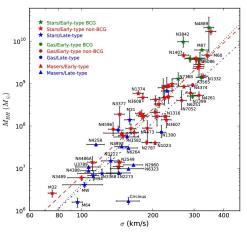
Active Galactic Nuclei (AGN)


Active Galactic Nuclei (AGN)

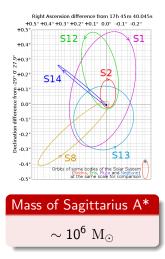

The Galactic centre (optical)

The Galactic centre (NIR)

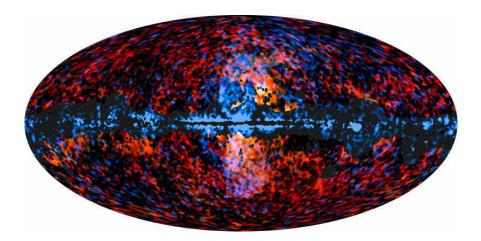

The Galactic centre (radio)



The Galactic centre (X rays)



Supermassive black holes

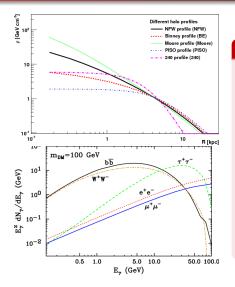


Supermassive black holes



The Fermi bubbles

Not-so-dark matter (DM)


Injection rate

$$egin{aligned} Q_{
m ann} &\sim \left(rac{
ho_{
m dm}}{m_{
m dm}}
ight)^2 \langle \sigma v
angle \; rac{{
m d}N}{{
m d}E} \ &\langle \sigma v
angle_{
m th} \sim 3 imes 10^{-26} ~{
m cm}^3 ~{
m s}^{-1} \end{aligned}$$

$$\langle \sigma v
angle_{
m now} \sim a + b v^2$$

$$Q_{
m decay} \sim rac{
ho_{
m dm}}{m_{
m dm}} \; \Gamma \; rac{{
m d}N}{{
m d}E}$$

Not-so-dark matter (DM)

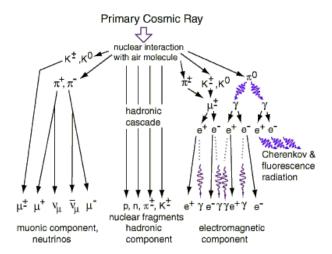
Injection rate

$$Q_{\rm ann} \sim \left(\frac{\rho_{\rm dm}}{m_{\rm dm}}\right)^2 \langle \sigma v \rangle \frac{{\rm d}N}{{\rm d}E}$$

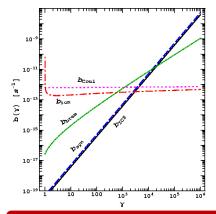
$$\langle \sigma v
angle_{
m th} \sim 3 imes 10^{-26} \ {
m cm}^3 \ {
m s}^{-1}$$

$$\langle \sigma v \rangle_{
m now} \sim a + b v^2$$

$$Q_{
m decay} \sim rac{
ho_{
m dm}}{m_{
m dm}} \; \Gamma \; rac{{
m d}N}{{
m d}E}$$


What could possibly go wrong?

Cosmic ray propagation


Diffusion-loss equation

$$\begin{array}{c} \text{cosmic ray energy spectrum} \\ \frac{\partial}{\partial t} \frac{\mathrm{d}n}{\mathrm{d}\gamma}(\vec{x},\gamma) & = \nabla \left[\mathcal{K}(\vec{x},\gamma) \nabla \frac{\mathrm{d}n}{\mathrm{d}\gamma}(\vec{x},\gamma) \right] + \frac{\partial}{\partial\gamma} \left[b(\vec{x},\gamma) \frac{\mathrm{d}n}{\mathrm{d}\gamma}(\vec{x},\gamma) \right] + Q(\vec{x},\gamma) \\ \text{steady-state} & \text{diffusion} & \text{energy losses} & \text{source term} \end{array}$$

Hadrons

Leptons

Ionisation

$$b_{ ext{ion}}(\gamma) = rac{q_{ ext{e}}^4 n_{ ext{H}}}{8\pi\epsilon_0^2 m_{ ext{e}}^2 c^3 \sqrt{1-rac{1}{\gamma^2}}} f(\gamma)$$

1st Thai-CTA Workshop

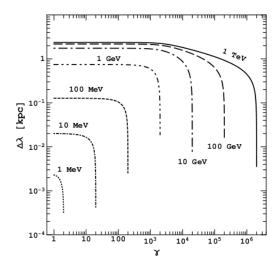
Inverse Compton Scattering (ICS)

$$b_{
m ICS}(\gamma) = rac{4}{3} rac{\sigma_{
m T}}{m_{
m e} c} \gamma^2 U_{
m rad}$$

Synchrotron

$$b_{
m syn}(\gamma) = rac{4}{3} rac{\sigma_{
m T}}{m_{
m e} c} \gamma^2 U_{
m B}$$

Bremsstrahlung


$$rac{b_{ ext{brem}}(\gamma)}{1.51 imes 10^{-16} ext{ s}^{-1}} pprox n_{ ext{e}} \gamma \left[\ln(\gamma) + 0.36
ight]$$

Coulomb collisions

$$rac{b_{
m Coul}(\gamma)}{1,2 imes 10^{-12}~{
m s}^{-1}} pprox n_{
m e} \left[1+rac{\ln(\gamma/n_{
m e})}{75}
ight]$$

Astrophysical background (I)

Diffusion

Galactic structure

Interstellar medium (ISM)

- Density
- Temperature
- Ionisation

EM field

- Light (ISRF)
- Magnetic field

To be continued...