AGN Outflow Simulation

Presented by

Manus Boonmalai

Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

AGN in Keel et al. (2015) sample

Galaxy Seyfert II

- Active nuclei
- Smaller amounts of energy release
- Low accretion rate

Figure 1. Fading AGN (NASA / ESA / W. Keel, University of Alabama)

Study previous literatures and select Active Galaxy samples presented in Keel et al. (2015)

Figure 2. NGC 5252 (SDSS from SIMBAD) Major axis size = 90 arcsec (43 kpc) Minor axis size = 39.6 arcsec (19 kpc)

NGC 5252

- Symmetric, edge-on stellar disk in a luminous bulge
- The clouds extended more than 10-kpc
- Type Lenticular galaxy (S0)

Figure 3. NGC 5252 scale bar is 2.5 kpc. North is to the top and east to the left (NASA, ESA, Galaxy zoo team & W. Keel., University of Alabama, USA).

GADGET-2

- The GAlaxies with Dark matter and Gas interact-2 (GADGET-2) code (Springel., 2005).
 - published to be freely used for studying
- Isolated systems
- Self-gravitational adiabatic collapse
- N-body system
- Gas dynamics
- Isothermal collapse
- Dark matter halo mass function and clustering
- Merging of galaxies

- Formation of a rich galaxy cluster
- Spherical collapse of a self-gravitating sphere of gas
- Cosmological formation of a cluster of galaxies
- Cosmological structure formation in a periodic box with adiabatic gas physics

(Almudena and Wolfram, 1995; Marconi and Hunt, 2003)

- To simulate AGN feedback in form of kinetic feedback
- Study its interaction with the intergalactic medium by density of outflow gas
- Discuss the results

