## Machine Learning Object Classification for GOTO


R. Yoyponsan, U. Sawangwit, S. Komonjinda

NARIT
GRAVITATIONAL-WAVE OPTICAL TRANSIENT OBSERVER

## Outline

- Introduction
- GOTO specifications
- Estimated Gravitaional Wave source position
- Challenges
- Existing solutions
- Our task
- Procedure
- Simulated data
- Stratified k-folded cross validation
- Machine Learning : Random Forest, Artificial Neural Network, k-Nearest Neighbors
- Evaluation : Receiver Operation Characteristic (ROC)


## Inroduction : GOTO

- Gravitational-wave Optical Transient observers (GOTO)
- Robotic, wide field-of-view, high cadence telescopes
- Response to signal triggered by GW detectors (LIGO, VIRGO, ...)
- Complete the whole sky every 6 nights
- High data production rate
- Located at La Palma Observatory



## GOTO specification

- $4 \times 40 \mathrm{~cm} \mathrm{f} / 2.5$ Wynne-Ricardo OTAs from APM professional telescopes Gmbh
- Shared fast-slewing GE mount
- Field of view $\sim 18$ sqr.deg (4.5 per OTA)
- $4 \times 50$ Mpixel detectors at $1.2^{\prime \prime} /$ pixel
- 20-21 mag in wide optical filter in 5-10 mins
- 5 s readout



## GOTO Specification



## Estimated Gravitational Wave (GW) Source Location (present)



## Challenges

- Require fast onsite data processing pipeline and transient detection pipeline
- Given the volume of data, it is nearly impossible to process by hand


## Existing Solutions to Large Data Problem

- Human scan : galaxyzoo - more than 10,000 volunteers helped to classify galaxy type from multiple catalogs; such as, SDSS, Chandra, etc. The current data comes from Dark Energy Camera Legacy Survey (DECaLS)



## Existing Solutions to Large Data Problem

- Automated process using pipeline and ML - applied ML to detect transient events
- Palomar Transient Factory (PTF; Smith et al. 2011),
- Panoramic Survey Telescope and Rapid Response System Medium Deep Survey(Rest at al. 2014),
- Dark Energy Survey (DES; Flaugher 2005)
- Transient detection use image subtraction technique


## Existing solutions



- https://indico.in2p3.fr/event/11235/contributions/4789/attachments/4114/5176/ PresentationReunionMontpellier.pdf


## Our task

- Handle reduced images WITHOUT subtraction
- At present, we work on object detection and classification to seperate point sources from extended sources
- Experiment on Machine Learning (ML) classification with 3 algorithms; namely
- Random Forests (RF)
- Artificial Neural Network (ANN)
- K-Nearest Neighbors (KNN)
- Use simulated image
- The pipeline is based on Pyhton programming language.

| Machine Learning Technique | AUC | Accuracy | Recall | Precision | F1-score | Confusion Matrix |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Random Forest (RF) <br> Section 5.6 | 0.97 | 0.91 | 0.91 | 0.93 | 0.92 | Object Not Object | Object | Not Object |
|  |  |  |  |  |  |  | 3541 | 342 |
|  |  |  |  |  |  |  | 259 | 2732 |
| K-Nearest Neighbours <br> (KNN) <br> Section 5.3 | 0.94 | 0.89 | 0.90 | 0.91 | 0.90 |  | Object | Not Object |
|  |  |  |  |  |  | Object | 3506 | 377 |
|  |  |  |  |  |  | Not Object | 363 | 2628 |
| SkyNet <br> Section 5.5 | 0.94 | 0.88 | 0.89 | 0.90 | 0.89 |  | Object | Not Object |
|  |  |  |  |  |  | Object | 3461 | 422 |
|  |  |  |  |  |  | Not Object | 399 | 2592 |
| Support Vector Machine (SVM) <br> Section 5.4 | 0.93 | 0.86 | 0.90 | 0.85 | 0.87 |  | Object | Not Object |
|  |  |  |  |  |  | Object | 3514 | 369 |
|  |  |  |  |  |  | Not Object | 605 | 2386 |
| Minimum Error Classification <br> (MEC) <br> Section 5.1 | 0.90 | 0.84 | 0.92 | 0.83 | 0.87 |  | Object | Not Object |
|  |  |  |  |  |  | Object | 3559 | 324 |
|  |  |  |  |  |  | Not Object | 754 | 2237 |
| Naïve Bayes | 0.80 | 0.77 | 0.86 | 0.77 | 0.81 |  | Object | Not Object |
| (NB) |  |  |  |  |  | Object | 3333 | 550 |
| Section 5.2 |  |  |  |  |  | Not Object | 998 | 1993 |

## Procedure



## Simulated data

- Simulated Data generated by SkyMaker
- $8176 \times 6132$ pixels in total of 16 images
- FWHM of point spread function $=0.9$
- Pixel size = 1.24 arcsec
- Clear filter
- In total, we are able to detect 249,640 objects
- Point sources : 161,386, assigned to class 1
- Extended sources : 88,251, assigned to class 0


Class 1 :
Point source

## Image example



## Train/Test data - Stratified k-Fold Cross validation

## Stratified K-fold Cross Validation ( $\mathrm{K}=5$ )


https://www.slideshare.net/markpeng/ general-tips-for-participating-kagglecompetitions

By Mark Peng

## Object Detection and Extraction

- Use Source Extractor (Bertin \& Arnouts, 1997)
- Detection threshold of 2 sigma
- Example of features from 27 Source Extractor features:
- FLUX_APER - Flux vector within fixed circular aperture (default diameter 5 pixels)
- KRON_RADIUS - Kron apertures
- A_IMAGE - Profile RMS along major axis
- B_IMAGE - Profile RMS along minor axis
- ELLIPTICITY - 1 - B_IMAGE/A_IMAGE
- CLASS_STAR - S/G classifier output from Source Extractor's neural network


## Extract goodness-of-fit test for 2 d gaussian test

- We assume circular gaussian profile for point source, with addition back ground offset :

$$
\begin{aligned}
& \text { back ground ottset : } \\
& f(x, y)=a_{0}+a_{1} \exp -\left(\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

- 2D Gaussian fitting in 20x20 pixels surrounding a centroid
- Calculate chi2 as a goodness-of-fit test
- **require parallel computing to speed up the process

In Total we have 28 features for machine learning process.


## Random Forests (RF)

- Based off of decision tree
- Each tree in the forest is built from a random bootstrap sample of the original data (Machado et al. 2015, Veterinary Research)



## Random Forests (RF)

- The prediction is the majority result from all trees в O. intan node (yock)
O terminu nose


Machado et al. 2015

## Artificial Neural Network (ANN)

- Imitate biological nerual network by creating neurons (nodes) and link between neurons (vertices)



## k-Nearest Neighbors (KNN)

## http://garylv.github.io/machine-learning/

 2016/05/01/k-nearest-neighbours/
## kNN Algorithm

0. Look at the data


Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

## 2. Find neighbours



Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace

1. Calculate distances


Start by calculating the distances between the grey point and all other points.

## 3. Vote on labels

```
Class # of
```

```
(1) 2
```



```the vote!
Point \(\bigcirc\) is therefore predicted to be of class
```

Vote on the predicted class labels based on the classes of the $k$ nearest neigh bours. Here, the labels were predicted based on the $k=3$ nearest neighbours.

## Receiver Operating Characteristic (ROC)

- A graph showing relation between true positive rate (tpr) and false positive rate (fpr)of a classifier

$$
\begin{aligned}
& \mathrm{TPR}=\frac{\mathrm{TP}}{P}=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}=1-\mathrm{FNR} \\
& \mathrm{FPR}=\frac{\mathrm{FP}}{N}=\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TN}}=1-\mathrm{TNR}
\end{aligned}
$$

Example from RF testing:
TPR $=0.989559$
$F P R=0.051898$

## Predicition



## Example of ROC curve



## Let Blue = Class 0 <br> Red = Class 1

Y axis for number of objects
X axis for prediction probabilities
Area Under the Curve (AUC) AUC provides an aggregate measure of performance across all possible
classification thresholds.AUC ranges in value from 0 to 1 .

AUC $=0.0$ means 100\% wrong AUC $=1.0$ means $100 \%$ right

## Example of ROC Curve


https://www.dataschool.io/roc-curves-and-aucexplained/

## ROC of RF



## ROC of ANN



## ROC of KNN



## Thank you for your attention

